5 research outputs found

    Can frailty scores predict the incidence of cancer? : Results from two large population-based studies

    Get PDF
    While chronological age is the single biggest risk factor for cancer, it is less clear whether frailty, an age-related state of physiological decline, may also predict cancer incidence. We assessed the associations of frailty index (FI) and frailty phenotype (FP) scores with the incidence of any cancer and five common cancers (breast, prostate, lung, colorectal, melanoma) in 453,144 UK Biobank (UKB) and 36,888 Screening Across the Lifespan Twin study (SALT) participants, who aged 38–73 years and had no cancer diagnosis at baseline. During a median follow-up of 10.9 and 10.7 years, 53,049 (11.7%) and 4,362 (11.8%) incident cancers were documented in UKB and SALT, respectively. Using multivariable-adjusted Cox models, we found a higher risk of any cancer in frail vs. non-frail UKB participants, when defined by both FI (hazard ratio [HR] = 1.22; 95% confidence interval [CI] = 1.17–1.28) and FP (HR = 1.16; 95% CI = 1.11–1.21). The FI in SALT similarly predicted risk of any cancer (HR = 1.31; 95% CI = 1.15–1.49). Moreover, frailty was predictive of lung cancer in UKB, although this association was not observed in SALT. Adding frailty scores to models including age, sex, and traditional cancer risk factors resulted in little improvement in C-statistics for most cancers. In a within-twin-pair analysis in SALT, the association between FI and any cancer was attenuated within monozygotic but not dizygotic twins, indicating that it may partly be explained by genetic factors. Our findings suggest that frailty scores are associated with the incidence of any cancer and lung cancer, although their clinical utility for predicting cancers may be limited.publishedVersionPeer reviewe

    Rare functional variants in the CRP and G6PC genes modify the relationship between obesity and serum C-reactive protein in white British population

    Get PDF
    Background: C-reactive protein (CRP) is a sensitive biomarker of inflammation with moderate heritability. The role of rare functional genetic variants in relation to serum CRP is understudied. We aimed to examine gene mutation burden of protein-altering (PA) and loss-of-function (LOF) variants in association with serum CRP, and to further explore the clinical relevance. Methods: We included 161,430 unrelated participants of European ancestry from the UK Biobank. Of the rare (minor allele frequency <0.1%) and functional variants, 1,776,249 PA and 266,226 LOF variants were identified. Gene-based burden tests, linear regressions, and logistic regressions were performed to identify the candidate mutations at the gene and variant levels, to estimate the potential interaction effect between the identified PA mutation and obesity, and to evaluate the relative risk of 16 CRP-associated diseases. Results: At the gene level, PA mutation burdens of the CRP (β = −0.685, p = 2.87e-28) and G6PC genes (β = 0.203, p = 1.50e-06) were associated with reduced and increased serum CRP concentration, respectively. At the variant level, seven PA alleles in the CRP gene decreased serum CRP, of which the per-allele effects were approximately three to seven times greater than that of a common variant in the same locus. The effects of obesity and central obesity on serum CRP concentration were smaller among the PA mutation carriers in the CRP (pinteraction = 0.008) and G6PC gene (pinteraction = 0.034) compared to the corresponding non-carriers. Conclusion: PA mutation burdens in the CRP and G6PC genes are strongly associated with decreased serum CRP concentrations. As serum CRP and obesity are important predictors of cardiovascular risks in clinics, our observations suggest taking rare genetic factors into consideration might improve the delivery of precision medicine.Peer reviewe

    Unraveling the metabolic underpinnings of frailty using multicohort observational and Mendelian randomization analyses

    Get PDF
    Identifying metabolic biomarkers of frailty, an age-related state of physiological decline, is important for understanding its metabolic underpinnings and developing preventive strategies. Here, we systematically examined 168 nuclear magnetic resonance-based metabolomic biomarkers and 32 clinical biomarkers for their associations with frailty. In up to 90,573 UK Biobank participants, we identified 59 biomarkers robustly and independently associated with the frailty index (FI). Of these, 34 associations were replicated in the Swedish TwinGene study (n = 11,025) and the Finnish Health 2000 Survey (n = 6073). Using two-sample Mendelian randomization, we showed that the genetically predicted level of glycoprotein acetyls, an inflammatory marker, was statistically significantly associated with an increased FI (β per SD increase = 0.37%, 95% confidence interval: 0.12–0.61). Creatinine and several lipoprotein lipids were also associated with increased FI, yet their effects were mostly driven by kidney and cardiometabolic diseases, respectively. Our findings provide new insights into the causal effects of metabolites on frailty and highlight the role of chronic inflammation underlying frailty development.Peer reviewe

    Clinical biomarker-based biological aging and risk of cancer in the UK Biobank

    Get PDF
    Background: Despite a clear link between aging and cancer, there has been inconclusive evidence on how biological age (BA) may be associated with cancer incidence. Methods: We studied 308,156 UK Biobank participants with no history of cancer at enrolment. Using 18 age-associated clinical biomarkers, we computed three BA measures (Klemera-Doubal method [KDM], PhenoAge, homeostatic dysregulation [HD]) and assessed their associations with incidence of any cancer and five common cancers (breast, prostate, lung, colorectal, and melanoma) using Cox proportional-hazards models. Results: A total of 35,426 incident cancers were documented during a median follow-up of 10.9 years. Adjusting for common cancer risk factors, 1-standard deviation (SD) increment in the age-adjusted KDM (hazard ratio = 1.04, 95% confidence interval = 1.03–1.05), age-adjusted PhenoAge (1.09, 1.07–1.10), and HD (1.02, 1.01–1.03) was significantly associated with a higher risk of any cancer. All BA measures were also associated with increased risks of lung and colorectal cancers, but only PhenoAge was associated with breast cancer risk. Furthermore, we observed an inverse association between BA measures and prostate cancer, although it was attenuated after removing glycated hemoglobin and serum glucose from the BA algorithms. Conclusions: Advanced BA quantified by clinical biomarkers is associated with increased risks of any cancer, lung cancer, and colorectal cancer.publishedVersionPeer reviewe
    corecore