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Abstract
Identifying metabolic biomarkers of frailty, an age-related state of physiological 
decline, is important for understanding its metabolic underpinnings and develop-
ing preventive strategies. Here, we systematically examined 168 nuclear magnetic 
resonance-based metabolomic biomarkers and 32 clinical biomarkers for their asso-
ciations with frailty. In up to 90,573 UK Biobank participants, we identified 59 bio-
markers robustly and independently associated with the frailty index (FI). Of these, 
34 associations were replicated in the Swedish TwinGene study (n = 11,025) and the 
Finnish Health 2000 Survey (n = 6073). Using two-sample Mendelian randomization, 
we showed that the genetically predicted level of glycoprotein acetyls, an inflamma-
tory marker, was statistically significantly associated with an increased FI (β per SD 
increase = 0.37%, 95% confidence interval: 0.12–0.61). Creatinine and several lipopro-
tein lipids were also associated with increased FI, yet their effects were mostly driven 
by kidney and cardiometabolic diseases, respectively. Our findings provide new in-
sights into the causal effects of metabolites on frailty and highlight the role of chronic 
inflammation underlying frailty development.
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1  |  INTRODUC TION

Frailty, a state of multisystem physiological decline (Clegg 
et al.,  2013), is a strong, independent predictor of a range of ad-
verse outcomes, such as mortality, falls, and hospitalizations 
(Kojima, 2015, 2016; Peng et al., 2022). Among the multiple opera-
tional definitions of frailty, the two most widely adopted models are 
the frailty index (FI) (Searle et al., 2008) and the frailty phenotype 
(FP) (Fried et al., 2001). The FI describes frailty as the accumulation 
of age-related health deficits (e.g., diseases, signs, symptoms, and 
disabilities), whereas the FP considers frailty as a clinical syndrome 
characterized by weakness, slowness, exhaustion, unintentional 
weight loss, and low physical activity. Depending on the assessment 
method, the overall prevalence of frailty varies from 12% to 24% 
among individuals aged ≥50 years and it rises substantially with age 
(O'Caoimh et al., 2021). Since frailty is dynamic and potentially re-
versible (Hoogendijk et al., 2019), improved diagnosis and manage-
ment of frail individuals is crucial to reduce morbidity and mortality 
in the aging population.

Due to its complexity and multidimensional nature, it is challeng-
ing to uncover the underlying mechanisms of frailty. Studies have 
shown that both genetic and environmental factors play an import-
ant role in the etiology of frailty, with an estimated heritability of 
25%–50% (Livshits et al., 2018; Mak et al., 2021). A recent genome-
wide association study (GWAS) provided further insights into the 
genetic underpinnings of frailty, suggesting that frailty is influenced 
by genetic loci related to several disease risk factors, such as body 
mass index (BMI), cardiovascular diseases, and mental health (Atkins 
et al.,  2021). However, how these genetic findings translate into 
the biological processes underlying frailty is still unclear. Studying 
metabolic biomarkers, which are small molecules involved in met-
abolic reactions and regulated by genotypes to a varying degree, 
could contribute to the understanding of the molecular mecha-
nisms of frailty and aid in the development of preventive strategies 
(Picca et al., 2019). Prior studies have proposed a plethora of frailty-
associated blood biomarkers, including inflammation markers (e.g., 
C-reactive protein [CRP], interleukin-6), immune markers (e.g., white 
blood cell count), hormones (e.g., testosterone, insulin-like growth 
factor 1), and clinical markers (e.g., albumin, creatinine) (Cardoso 
et al., 2018; Kane & Sinclair, 2019; Picca et al., 2022). More recently, 
metabolomics studies based on liquid chromatography–mass spec-
trometry suggested that metabolites involving in energy producing 
pathways and antioxidation could be associated with frailty (Kameda 
et al., 2020; Rattray et al., 2019; Westbrook et al., 2021). However, 
no biomarker has been identified so far that could be used as a spe-
cific target for frailty diagnosis and drug development. One of the 
reasons is that current evidence is mostly based on observational 
studies, which is difficult to establish causal relationships as the find-
ings may be biased by confounding and reverse causality.

As a causal inference method, Mendelian randomization (MR) 
uses genetic variants as instrumental variables (IVs) to study the 
lifelong effect of an exposure on a disease outcome, providing an 
approach that is less prone to confounding and reverse causation 

compared to observational studies (Davies et al.,  2018). To date, 
a few MR studies have identified causal links between increased 
low-density lipoprotein (LDL)-cholesterol, saturated fatty acids, 
as well as decreased serum total protein levels, and the FI (Tomata 
et al., 2021, 2022; Wang et al., 2019). Nevertheless, whether other 
frailty-associated metabolic biomarkers may also have causal effects 
on frailty, and whether there are differences in the metabolic under-
pinnings between the different constructs of frailty (e.g., FI vs. FP) 
remain largely unexplored.

To address these knowledge gaps and identify novel metabolic 
biomarkers of frailty, we investigated the effects of 200 circulating 
metabolic biomarkers on frailty, measured by both the FI and FP, 
using observational and MR approaches (Figure  1). The analyzed 
biomarkers include 168 metabolomic biomarkers quantified from a 
standardized, high-throughput nuclear magnetic resonance (NMR) 
metabolomics platform, as well as 32 conventional clinical biomark-
ers from serum and urine samples. Using data from three European 
population-based studies, including the UK Biobank (UKB) as discov-
ery cohort, and the Swedish TwinGene study and the Finnish Health 
2000 Survey as replication cohorts, we identified 34 biomarkers 
consistently and strongly associated with frailty independent of 
other risk factors. Subsequently, we conducted two-sample MR 
analyses to examine whether the identified biomarkers are causally 
related to frailty.

2  |  RESULTS

2.1  |  Cross-sectional associations of metabolic 
biomarkers with frailty in UK biobank

Details of the 200 metabolic biomarkers are shown in Table S1 and 
Figures S1 and S2. The 168 NMR metabolomic biomarkers include 
amino acids, cholesterols, lipoproteins, fatty acids, and metabolites 
related to inflammation and fluid balance; part of the metabolites 
also overlaps with the included clinical biomarkers, such as LDL-
cholesterol, creatinine, and albumin. As expected, high correlations 
were found across many of these biomarkers, especially those within 
the same biological domains (Figures S3 and S4; Tables S2 and S3). 
Frailty was assessed using the FI (ranging from 0% to 100%) and FP 
scores (ranging from 0 to 5, as a secondary outcome), where higher 
scores denote higher degrees of frailty (Tables S4 and S5). Two sub-
samples from the UKB were used as the discovery cohorts for the 
metabolomic and clinical biomarkers, respectively. They consisted 
of 90,573 participants who had complete data on the 168 NMR me-
tabolomic biomarkers (mean age 56.8 years [standard deviation (SD) 
8.0]; 54% women; mean FI 12.3% [SD 7.4]) and 67,488 participants 
who had complete data on the 32 clinical biomarkers (mean age 
57.5 years [SD 8.2]; 39% women; mean FI 13.0% [SD 7.7]; Table 1).

Using linear regression models adjusted for age and sex, we 
found 191 of the 200 metabolic biomarkers statistically signifi-
cantly associated with the FI after Bonferroni correction for multiple 
testing at p < 0.00025 (i.e., 0.05/200; Figure 2; Tables S6 and S7). 
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Among the NMR metabolomic biomarkers, glycoprotein acetyls 
(GlycA) had the strongest positive association, every SD increase 
(equivalent to 0.11 mmol/L) being associated with a 1.40% higher FI 
(95% confidence interval [CI]: 1.35–1.44). Most of the cholesterols 
and lipoproteins were negatively associated with the FI (Figure 2). 
Among the clinical biomarkers, the largest effect sizes were found 
for glycated hemoglobin (HbA1c; β per SD increase: 1.84%, 95% CI: 
1.78–1.90) and total cholesterol (β per SD increase: −1.62%, 95% 
CI: −1.67 to −1.56). When additionally adjusted for baseline assess-
ment center, BMI, smoking, alcohol consumption, education, and 
deprivation index (i.e., fully adjusted models), we found that 164 

biomarkers remained statistically significantly, where most of them 
were inversely, associated with the FI (Figure S5). As the metabolic 
biomarkers were highly intercorrelated, we applied the least ab-
solute shrinkage and selection operator (LASSO) procedure in the 
observational analysis to select biomarkers that were strongly and 
independently associated with the FI when adjusted for each other 
and also for age and sex. In total, 56 NMR metabolomic and 21 clin-
ical biomarkers were identified in LASSO models (i.e., had nonzero 
coefficients; Figure S6; Tables S6 and S7).

Several sensitivity analyses were performed. Firstly, instead of 
the FI, we used FP score as the outcome and found that most of the 

F I G U R E  1 Study overview. This study was split into two parts: observational and MR analysis. (a) In observational analysis, 90,573 and 
67,488 white UKB participants who had complete data on 168 NMR metabolomic and 32 clinical biomarkers, respectively, were used to 
assess the cross-sectional associations between the biomarkers and the frailty index. A total of 41 metabolomic and 18 clinical biomarkers 
that were statistically significant in linear regression models after Bonferroni correction (p < 0.05/200) and had nonzero coefficients in 
LASSO models were brought forward to the replication phase in TwinGene and Health 2000. (b) Two-sample MR analyses were performed 
for the 34 replicated biomarkers (and 10 biomarkers unavailable in the replication cohorts). CHARGE, Cohorts for Heart and Aging Research 
in Genomic Epidemiology consortium; CRP, C-reactive protein; FI, frailty index; FP, frailty phenotype; GLGC, Global Lipids Genetics 
Consortium; GWAS, genome-wide association study; HbA1c, glycated hemoglobin; LASSO, least absolute shrinkage and selection operator; 
LD, linkage disequilibrium; MAGIC, Meta-Analyses of Glucose and Insulin-related traits Consortium; MR, Mendelian randomization; MR-
PRESSO, MR-pleiotropy residual sum and outlier; NMR, nuclear magnetic resonance; QC, quality control; SD, standard deviation; SNP, single 
nucleotide polymorphism; UKB, UK Biobank.
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associations were directionally consistent with the analyses using 
the FI (Figure 2 and Figure S5). Secondly, after excluding outlier bio-
marker values, all the biomarker-FI associations remained essentially 
unchanged (Tables S6 and S7). Finally, we performed stratified anal-
yses and observed largely similar results in subgroups by age, sex, 
and in non-white ethnic groups (Figure S7; Tables S8 and S9).

2.2  |  Replication in TwinGene and health 2000

For 41 NMR metabolomic biomarkers and 18 clinical biomarkers that 
were (i) significantly associated with the FI in multivariable-adjusted 
models and (ii) selected by LASSO in the UKB, we further examined 
their associations with the FI in two independent samples, includ-
ing 11,025 Swedish TwinGene participants (mean age 58.3 years [SD 
7.9]; 55% women; mean FI 12.1% [SD 8.0]) and 6073 Finnish Health 
2000 participants (mean age 52.5 years [SD 14.7]; 55% women; 
mean FI 17.7% [SD 12.9]; Table 1). We meta-analyzed the biomarker-
FI associations in TwinGene and Health 2000 and found that out of 

the 49 biomarkers that were available in the replication cohorts, 34 
were significantly associated with the FI (p < 0.05; Table S10). The 
replicated biomarkers were NMR metabolomic biomarkers from 
several domains including amino acids (e.g., alanine, phenylalanine), 
fluid balance (e.g., creatinine), inflammation (GlycA), fatty acids (e.g., 
monounsaturated fatty acids, linoleic acid), and lipoprotein sub-
classes, as well as clinical biomarkers such as LDL-cholesterol, CRP, 
and HbA1c (Figure 3).

2.3  |  Two-sample Mendelian randomization of 
identified biomarkers on frailty

Next, we performed two-sample MR analyses to examine potential 
causal relationships of the 44 biomarkers, of which 34 were rep-
licated in TwinGene and Health 2000 and 10 were unavailable in 
the replication cohorts. Genetic instruments (i.e., single nucleotide 
polymorphisms [SNPs] associated with the biomarkers) were se-
lected from the largest available GWASs; the estimated F-statistics 

TA B L E  1 Characteristics of the samples used in the observational analysis.

Characteristic

UK biobank (discovery)a

TwinGene 
(replication)

Health 2000 
(replication)

NMR metabolomics 
subsample Clinical biomarkers subsample

No. of participants 90,573 67,488 11,025 6073

Age at baseline, year

Mean ± SD 56.77 ± 8.03 57.46 ± 8.16 58.33 ± 7.91 52.54 ± 14.68

Range 40–71 39–72 41–87 30–97

Women, n (%) 49,296 (54.4) 26,379 (39.1) 6017 (54.6) 3325 (54.8)

BMI, kg/m2, mean ± SD 27.33 ± 4.69 28.42 ± 5.16 25.05 ± 3.34 26.92 ± 4.63

Current smokers, n (%) 8964 (9.9) 7751 (11.5) 1795 (16.3) 1305 (21.5)

Alcohol consumption, g/year, 
mean ± SD

– – – 3599 ± 8220

Less than weekly, n (%) 25,790 (28.5) 19,321 (28.6) 3122 (30.1) –

Weekly, n (%) 64,727 (71.5) 48,134 (71.4) 7241 (69.9) –

Education levelb, n (%)

High 29,213 (32.5) 20,223 (30.3) 2862 (26.0) 1754 (28.9)

Intermediate 44,855 (50.0) 33,384 (50.0) 5199 (47.2) 1983 (32.7)

Low 15,684 (17.5) 13,206 (19.8) 2951 (26.8) 2336 (38.5)

Deprivation indexc, mean ± SD −1.48 ± 3.00 −1.25 ± 3.10 – –

FId, %, mean ± SD 12.29 ± 7.41 13.03 ± 7.71 12.15 ± 8.04 17.67 ± 12.90

FP scoree, mean ± SD 0.56 ± 0.82 0.64 ± 0.87 – –

a Two subsamples from the UK Biobank cohort were used for analysis of the two groups of biomarkers. The NMR metabolomics subsample had 
complete data on the 168 metabolomic biomarkers, while the clinical biomarkers subsample had complete data on the 32 clinical biomarkers.
b Education level in UKB was assessed by the highest self-reported qualification: low (no relevant qualifications); intermediate (A levels, O levels/
GCSEs, CSEs, NVQ/HND/HNC, and other professional qualifications); high (college or university degree). Education level in TwinGene was defined 
by years of completed education: low (<9 years); intermediate (9–12 years); high (>12 years).
c Townsend deprivation index was derived from national census data regarding unemployment, car ownership, home ownership, and household 
overcrowding. A higher score indicates a higher level of socioeconomic deprivation. It was only available in UK Biobank.
d FI was multiplied by 100 and was considered as the percentage of deficit accumulation (from 0% to 100%).
e FP was considered as a continuous score representing the number of frailty criteria present (from 0 to 5). It was only available in UK Biobank.
Abbreviations: BMI, body mass index; FI, frailty index; FP, frailty phenotype; NMR, nuclear magnetic resonance; SD, standard deviation.
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for all instruments were > 10 (Tables S11–S13). To obtain summary 
statistics for the SNP-frailty (outcome) associations, we performed a 
GWAS for the FI and FP in UKB samples that did not have an overlap 
of individuals with the exposure GWASs. Using the inverse variance 
weighted (IVW)-MR method, we observed 18 significant associa-
tions with the FI at a false discovery rate (FDR)-corrected threshold 
of p < 0.011 (Figure 3 and Table S14). Several of these MR estimates 
were directionally consistent with the observational estimates. For 
instance, each SD increment in the genetically predicted levels of 
GlycA and creatinine were associated with 0.37% (95% CI: 0.12–
0.61) and 0.38% (95% CI: 0.10–0.66) increase in the FI, respectively 
(Figure 4). By contrast, omega-6, apolipoprotein B, total cholesterol, 
LDL-cholesterol, and some of the lipoprotein subclasses were asso-
ciated with the FI negatively in the observational analysis but posi-
tively in the IVW-MR (Figure 3). None of the selected 44 biomarkers 
were statistically significantly associated with FP score (Table S14).

Notably, a considerable heterogeneity was observed for most 
MR estimates (p < 0.05 from Cochran's Q tests; Table S14), some of 
which could possibly be due to horizontal pleiotropy (i.e., genetic 
variants associate with other traits that influence the outcome). As 
sensitivity analyses, we applied pleiotropy-robust methods including 
MR-Egger, weighted median, weighted mode, and MR-pleiotropy re-
sidual sum and outlier (MR-PRESSO). Estimates for most biomarkers 
were comparable when using different MR methods; however, we 
found evidence of directional pleiotropy for GlycA, monounsatu-
rated fatty acids, and total lipids in small LDL (p < 0.05 for MR-Egger 
intercept; Table S14).

Since many of the IVs were associated with >1 NMR metabo-
lomic biomarkers, we performed a sensitivity analysis by excluding 
the potentially pleiotropic SNPs from each biomarker. As shown 
in Table S15, the MR estimates for GlycA and creatinine remained 
robust, and we also observed a statistically significant association 

F I G U R E  2 Age- and sex-adjusted observational associations of metabolic biomarkers with FI and FP scores in the UK Biobank. 
Estimates represent the age- and sex-adjusted changes in frailty index (outer tracks of the circles) or frailty phenotype score (inner tracks 
of the circles) per 1 standard deviation increase in the biomarker level. Red dots indicate positive associations, whereas blue dots indicate 
negative associations. Filled dots represent statistically significant associations after Bonferroni correction at p < 0.00025 (i.e., 0.05/200, 
considering 200 biomarkers). The corresponding numeric estimates are shown in Tables S6 and S7. ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; ApoA, apolipoprotein A; ApoB, apolipoprotein B; BCAA, branched chain amino acids; 
bOHbutyrate, 3-hydroxybutyrate; C, cholesterol; CE, cholesteryl esters; DHA, docosahexaenoic acid; FC, free cholesterol; FI, frailty index; 
FP, frailty phenotype; GGT, gamma glutamyltransferase; HbA1c, glycated hemoglobin; HDL, high-density lipoproteins; IDL, intermediate-
density lipoproteins; IGF, insulin-like growth factor; L, large (when used as prefix) or total lipids (when used as suffix); LA, linoleic acid; LDL, 
low-density lipoproteins; M, medium; MUFA, monounsaturated fatty acids; NMR, nuclear magnetic resonance; P, particle concentrations; 
PL, phospholipids; PUFA, polyunsaturated fatty acids; S, small; SD, standard deviation; SFA, saturated fatty acids; SHBG, sex hormone-
binding globulin; TG, triglycerides; Unsaturation, degree of unsaturation; UKB, UK Biobank; VLDL, very-low-density lipoproteins; XL, very 
large; XS, very small; XXL, extremely large.
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6 of 17  |     MAK et al.

between genetically predicted GlycA and increased FP score (β per 
SD increase: 0.040, 95% CI: 0.012–0.067). However, the MR esti-
mates for most of the lipids and lipoproteins were attenuated, prob-
ably due to the highly reduced number of genetic instruments.

To further examine whether the effects of the biomarkers on 
the FI could be influenced by the deficit items included in the FI, 
we performed sensitivity analyses of the MR using 11 stripped FIs 
as outcomes, where deficit items from each of the 11 categories, 
such as cardiometabolic, cancer, and immunological items were re-
moved from the corresponding FI. When removing cardiometabolic 
items (e.g., heart failure, stroke, diabetes, and high blood pressure), 

the IVW-MR estimates for monounsaturated fatty acids, omega-6, 
cholesterols, and lipoprotein subclasses were attenuated to null 
(Figure  5 and Table  S16). Estimates for GlycA and creatinine re-
mained significant across all the stripped FIs.

2.4  |  Subgroup and co-twin control analyses of 
creatinine and GlycA on FI

For GlycA and creatinine that had putative causal relationships 
with the FI, we performed additional subgroup analyses in the 

F I G U R E  3 Observational and MR effect estimates of selected metabolic biomarkers on FI. The 44 included biomarkers were those 
identified as FI-associated biomarkers in the UK Biobank (p < 0.00025 in linear regression models and had nonzero coefficients in LASSO 
models) and replicated (or not available) in TwinGene and Health 2000. The estimates are from fully adjusted linear regression models, 
including age, sex, baseline assessment center (only in UK Biobank), body mass index, smoking, alcohol consumption, education level, 
and deprivation index (only in UK Biobank) as covariates. The models in TwinGene were additionally corrected for twin relatedness. For 
the IVW-MR estimates, filled triangles represent statistically significant associations at p < 0.011 (FDR-corrected p value threshold). All 
the effect sizes represent the changes in FI (%) per 1 standard deviation increase in biomarker level (except for the IVW-MR estimates 
for CRP and HbA1c, which are per log mg/L increase and per % increase, respectively; details of the units used are shown in Table S11). 
All the observational estimates are shown in Tables S6 and S7; MR estimates are shown in Table S14. ALP, alkaline phosphatase; ApoB, 
apolipoprotein B; C, cholesterol; CE, cholesteryl esters; FC, free cholesterol; FI, frailty index; GGT, gamma glutamyltransferase; HbA1c, 
glycated hemoglobin; HDL, high-density lipoproteins; IDL, intermediate-density lipoproteins; IGF, insulin-like growth factor; IVW, inverse 
variance weighted; L, total lipids; LA, linoleic acid; LDL, low-density lipoproteins; M, medium; MR, Mendelian randomization; MUFA, 
monounsaturated fatty acids; NMR, nuclear magnetic resonance; P, particle concentrations; PL, phospholipids; PUFA, polyunsaturated fatty 
acids; S, small; SD, standard deviation; SHBG, sex hormone-binding globulin; TG, triglycerides; Unsaturation, degree of unsaturation; VLDL, 
very-low-density lipoproteins; XL, very large; XS, very small; XXL, extremely large.
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UKB to assess whether the associations could be driven by their 
associated traits, namely CRP and LDL-cholesterol for GlycA 
(Connelly et al., 2017), and chronic kidney disease for creatinine 
(Levey et al., 2009). The GlycA-FI association was robust across all 
subgroups (individuals stratified by their CRP and LDL-cholesterol 
levels), though it tended to be stronger among participants with 
high CRP and low LDL-cholesterol levels (Figure 6a and Table S17). 
The creatinine-FI association was statistically significant only 
in participants with a chronic kidney disease (Figure  6c and 
Table S18).

As a triangulation approach, we performed a within-twin-pair 
analysis in TwinGene to determine whether the FI-biomarker as-
sociations could be explained by familial confounding (i.e., shared 
genetic and/or shared environmental factors). Compared to the 
population-level estimate of the GlycA-FI association, the within-
pair estimate was slightly attenuated in dizygotic (DZ) twins and 
was attenuated to an even greater extent—although not com-
pletely—in monozygotic (MZ) twins, indicating potential genetic 
confounding (Figure 6b). For the creatinine-FI association, we ob-
served similar effect sizes for the population-level and within-pair 
estimates; however, the wide confidence intervals and statistically 
nonsignificant estimates in twin pairs precluded us from drawing 
conclusions on the extent to which this association could be attrib-
utable to familial factors (Figure 6d).

3  |  DISCUSSION

We conducted comprehensive observational analyses using data 
from three population-based studies, supplemented with MR anal-
yses to explore the effects of circulating metabolic biomarkers on 
frailty. In the large UKB sample, we found that the vast majority 
of the 200 assessed biomarkers were significantly associated with 
frailty, and the directions of associations were mostly consistent 
for the FI and FP models. Using multivariable linear regression and 
LASSO models, we selected 59 biomarkers that had the strongest 
observational associations with the FI in the UKB and replicated 34 
of these associations in TwinGene and Health 2000. Specifically, 
we showed that GlycA was strongly associated with increased FI in 
both observational and IVW-MR analyses and across different sub-
groups. However, the association was at least partly influenced by 
pleiotropy as indicated by MR-Egger and co-twin control analyses. 
MR analyses also suggested potential causal effects of creatinine, 
monounsaturated fatty acids, omega-6, and several cholesterol and 
lipoprotein traits on the FI, although these effects appeared to be 
driven by other traits and diseases associated with the exposures. 
We did not find evidence of causal relationships between the meta-
bolic biomarkers and the FP score.

To the best of our knowledge, this is the first study that has sys-
tematically assessed the associations of NMR metabolomic biomarkers 

F I G U R E  4 MR scatter plots for the effects of NMR-derived glycoprotein acetyls and creatinine on FI. (a) Scatter plot of the SNP-FI 
associations against SNP-GlycA associations. The slopes of the colored lines represent the estimated change in FI (%) per 1 standard 
deviation increase in genetically predicted GlycA level. Intercepts for IVW, weighted median, weighted mode, and MR-PRESSO were fixed at 
0; the MR-Egger intercept was 0.0276 (p = 0.028), indicating potential directional pleiotropy. Fifty-five SNPs were used in total, six of which 
were identified as outliers by MR-PRESSO (rs10455872, rs117733303, rs1548306, rs72801474, rs77303550, and rs9270074; these SNPs 
were indicated by asterisks). (b) Scatter plot of the SNP-FI associations against the SNP-creatinine associations. The slopes of the colored 
lines represent the estimated change in FI (%) per 1 standard deviation increase in genetically predicted creatinine level. The MR-Egger 
intercept was 0.005 (p = 0.73), indicating no evidence of directional pleiotropy. Sixty-nine SNPs were used in total, three of which were 
identified as outliers by MR-PRESSO (rs10008637, rs3974479, and rs9272116); these SNPs were indicated by asterisks. Error bars represent 
95% confidence intervals. All the MR estimates are shown in Table S14. FI, frailty index; GlycA, glycoprotein acetyls; IVW, inverse variance 
weighted; MR, Mendelian randomization; MR-PRESSO, MR-pleiotropy residual sum and outlier; SNP, single nucleotide polymorphism.
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with frailty. We reported several novel observational findings, includ-
ing the strong positive association of GlycA and the generally negative 
associations of lipoprotein subclasses and components with both the 
FI and FP scores. Our results for clinical biomarkers are also largely 
consistent with the literature, which has suggested positive associa-
tions of CRP (Velissaris et al., 2017) and glucose (Zaslavsky et al., 2016), 
and negative associations of vitamin D (Buchebner et al., 2019) and 
LDL-cholesterol (Jayanama et al.,  2018) with frailty. Since frailty is 
characterized by the dysregulation in multiple physiological systems 
such as endocrine system, immune system, brain, and skeletal muscles 
(Clegg et al., 2013), it is conceivable that frailty is related to many of the 

circulating metabolomic and clinical biomarkers, which are typically re-
flective of the current physiological state (Picca et al., 2019).

As observational results can be biased by confounding and 
reverse causation, we performed two-sample MR analyses to 
provide further mechanistic insights into the causal effects of 
the biomarkers on frailty (Davies et al.,  2018). Although the 
exact biological mechanisms of frailty are not yet fully under-
stood, studies have suggested “inflammaging” (i.e., systemic and 
chronic inflammation associated with aging) as the converging 
point of the mechanistic pillars of aging and the main contributor 
to age-related diseases, including frailty (Ferrucci & Fabbri, 2018; 

F I G U R E  5 MR sensitivity analysis for the effects of metabolic biomarkers on 11 stripped FIs removing deficit items from each category. 
The 19 included biomarkers are those that were significantly associated with the FI in IVW-MR after FDR correction. The 11 stripped FIs 
were calculated as the sum of deficit items divided by the total, after excluding items from each category in the UK Biobank. For example, 
the “FI, excluded cardiometabolic items” was a 41-item FI removing 8 cardiometabolic items (i.e., diabetes, myocardial infarction, angina, 
stroke, high blood pressure, hypothyroidism, deep vein thrombosis, and high cholesterol). The list of FI items in each category is shown in 
Table S4. A GWAS and a two-sample MR analysis were then performed for each of the 11 stripped FIs, using the same method as in the 
main analysis. The IVW-MR effect sizes represent the difference in FI (%) per 1 SD increase in genetically predicted biomarker level. Filled 
symbols represent statistically significant associations at p < 0.011 (FDR-corrected p value threshold). The numeric point estimates from this 
sensitivity analysis are shown in Table S16. ApoB, apolipoprotein B; C, cholesterol; CE, cholesteryl esters; FC, free cholesterol; FI, frailty 
index; GlycA, glycoprotein acetyls; HDL, high-density lipoproteins; IDL, intermediate-density lipoproteins; IVW, inverse variance weighted; 
L, total lipids; LDL, low-density lipoproteins; M, medium; MR, Mendelian randomization; MUFA, monounsaturated fatty acids; NMR, nuclear 
magnetic resonance; P, particle concentrations; PL, phospholipids; S, small; VLDL, very low-density lipoproteins; XL, very large; XS, very 
small.
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Franceschi et al., 2018; Kane & Sinclair, 2019; Picca et al., 2022). 
In line with previous studies showing robust relationships of pro-
inflammatory cytokines such as interleukin-6 and tumor necrosis 

factor-α with frailty (Kane & Sinclair,  2019; Picca et al.,  2022), 
we found that genetically predicted GlycA level was associated 
with an increased FI. Importantly, this effect was not driven by 

F I G U R E  6 Subgroup and co-twin control analyses for the association of NMR-derived glycoprotein acetyls and creatinine with FI. (a) 
Forest plot showing the association between GlycA and FI across subgroups of C-reactive protein and LDL-cholesterol levels in the UK 
Biobank. LDL-cholesterol values were adjusted for statin use. Details of the estimates are shown in Table S17. (b) Bar graph showing the 
population-level and within-twin-pair estimates for the association between GlycA and FI in the full sample, DZ twins (2762 pairs), and MZ 
twins (1132 pairs) in TwinGene. (c) Forest plot showing the association between the NMR-derived creatinine and FI among individuals with 
and without a chronic kidney disease. Chronic kidney disease cases were defined based on a self-reported kidney disease at baseline and 
ICD-10 codes N17, N18, or N19 from hospital data. Open circle represents a nonsignificant estimate (p ≥ 0.00025). Details of the estimates 
are shown in Table S18. (d) Bar graph showing the population-level and within-twin-pair estimates for the association between the NMR-
derived creatinine and FI in the full sample, DZ twins (2762 pairs), and MZ twins (1132 pairs) in TwinGene. Models for the subgroup analysis 
were multivariable linear regression models adjusted for age, sex, baseline assessment center, body mass index, smoking, alcohol, education, 
and deprivation. Models for the co-twin control analysis were generalized estimating equations adjusted for age, sex, body mass index, 
smoking, alcohol consumption, and years of education. All the error bars represent 95% confidence intervals. DZ, dizygotic; FI, frailty index; 
GlycA, glycoprotein acetyls; LDL, low-density lipoprotein; NMR, nuclear magnetic resonance; SD, standard deviation.
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the individual deficit items included in the FI nor by other traits 
(CRP and LDL-cholesterol) associated with GlycA. Meanwhile, our 
MR results did not support a causal relationship between CRP, a 
commonly used inflammatory marker in clinical practice (Bassuk 
et al., 2004), and frailty. GlycA is a novel, NMR-derived composite 
biomarker which reflects the concentration and glycosylation of 
acute-phase proteins such as α1-acid glycoprotein, haptoglobin, 
and α1-antitrypsin during inflammatory states, and has been pro-
posed as a more sensitive measure than CRP for detecting low-
grade inflammation in younger adults (Chiesa et al., 2022; Connelly 
et al., 2017). Similarly, a recent study suggested that the interleu-
kin-6 signaling pathway that also includes CRP, but not CRP itself, 
could have a causal effect on frailty (Mourtzi et al., 2023). Notably, 
the MR-Egger intercept and within-twin-pair estimates implicated 
possible pleiotropic effects. This could be due to the GlycA sig-
nal that overlaps with lipoproteins and triglycerides (Connelly 
et al.,  2017), which may also be associated with frailty (Ramsay 
et al.,  2015). Taken together, these findings suggest that GlycA 
may capture part of the inflammatory response that is causally re-
lated to frailty and could be a potential biomarker for early identi-
fication and monitoring of frailty. More studies are also warranted 
to assess the effect of reducing inflammation on frailty due to the 
currently limited and inconclusive evidence (Espinoza et al., 2022; 
Orkaby et al.,  2021). On the contrary, we observed a putative 
causal effect of NMR-derived creatinine on the FI, although this 
effect was not found in the clinical biomarker serum creatinine, 
measured using an enzymatic assay. Creatinine is a by-product of 
muscle metabolism and increased levels are often indicative of a 
decline in kidney function (Thongprayoon et al., 2016). As frailty 
is closely linked to kidney function (Nixon et al.,  2018) and has 
shown to be associated with glomerular filtration rate estimated 
by serum creatinine (Ballew et al., 2017), the association between 
creatinine and FI could possibly be explained by kidney disease. 
This finding was also confirmed in our subgroup analysis, in which 
we found no statistically significant association between NMR-
derived creatinine and FI in individuals without a chronic kidney 
disease.

In the observational analyses, we found that most of the lipids 
and lipoprotein subclasses, except for triglycerides within lipopro-
teins, were negatively associated with the FI. On the contrary, our 
MR results indicated that many of these lipid traits, such as sub-
classes of very low-, intermediate-, and low-density lipoproteins, as 
well as monounsaturated fatty acids and omega-6, were associated 
with an increased FI. These findings are similar to previously re-
ported inverse relationships of total cholesterol and LDL-cholesterol 
with frailty in observational studies (Jayanama et al., 2018; Matsuoka 
et al., 2020), but a positive association between LDL-cholesterol and 
the FI in an MR study (Wang et al., 2019). The apparent discrepancy 
in the direction of the associations could be due to uncontrolled 
confounders in the observational associations, as well as the dif-
ferent interpretations of the models; the MR estimates represent a 
lifelong effect of genetically predicted biomarker levels on frailty, 
while observational estimates usually represent an association over 

a shorter period of life. Although these biomarkers have shown to be 
risk factors for cardiovascular diseases and diabetes (Do et al., 2013; 
Holmes et al.,  2018; Richardson et al.,  2020; White et al.,  2016; 
Zagkos et al., 2022), some studies have also found no or inverse re-
lationship between LDL-cholesterol and mortality risk among older 
adults (Butterworth et al., 2009; Li et al., 2021). Moreover, MR es-
timates could potentially be biased by SNPs that have pleiotropic 
effects. It has been shown that SNPs in lipid-associated genes, such 
as PCSK9, are highly pleiotropic and are robustly associated with var-
ious lipoprotein subclasses, cholesterols, as well as omega-6 fatty 
acids and sphingomyelin (Würtz et al.,  2013). Importantly, when 
the FI was stripped of cardiometabolic items such as heart failure, 
stroke, and diabetes, the MR estimates for all these lipid and lipopro-
tein traits attenuated to null, suggesting that their effects on the FI 
are likely mediated by cardiometabolic diseases. This also highlights 
the importance of optimizing cardiovascular disease risk factors in 
mitigating frailty (Atkins et al., 2019).

We used both the FI and FP to measure frailty, which are the 
two most widely validated frailty measures in community-dwelling 
older adults (Dent et al., 2016). Despite being different operational 
approaches to frailty, previous research has demonstrated that the 
FI and FP share a large part of their genetic and environmental eti-
ologies, and may thus tap the same root causes of frailty (Livshits 
et al., 2018). Although most biomarkers had similar effects on the 
FI and FP in the observational analysis, we did not observe any 
statistically significant association between biomarkers and the 
FP in the main MR analysis. This could be due to differences in 
their underlying mechanisms, in which the FI is a multidimensional 
construct that incorporates deficits from multiple tissue and organ 
systems (Searle et al., 2008), while the FP is more related to physi-
cal functioning and defines a clinical syndrome that emerges from 
a decline in physiological reserves (Fried et al., 2001). Therefore, 
biomarkers directly related to the FI items, such as lipids and li-
poproteins that are indicative of cardiometabolic health, may be 
more strongly associated with the FI than the FP. Of note, in the 
sensitivity MR analysis, we found that GlycA was significantly as-
sociated with both the FI and FP after excluding the potentially 
pleiotropic SNPs, indicating that inflammation could be a common 
driver of both the multidimensional (FI) and physical (FP) frailty. 
Moreover, while the FP was originally developed for older adults, 
the continuous FI is often more informative on the frailty status 
in younger adults (Clegg et al., 2013). The null association for the 
FP could be explained by the relatively young and healthy popu-
lation of UKB and the low prevalence of frailty as measured by 
the FP, which may have reduced statistical power in the GWAS 
and the subsequent MR analysis. The FP was also not available in 
TwinGene and Health 2000. More studies are therefore needed 
to confirm the relationships between metabolic biomarkers and 
physical frailty.

The strengths of this study include the use of a standardized 
NMR metabolomics platform in three large cohorts to identify met-
abolic biomarkers that have strong evidence of associations with the 
two measures of frailty. This platform allowed us to examine novel 
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biomarkers, such as inflammatory markers and lipids that are not 
yet commonly assessed in clinical practice. Using the MR and co-
twin control methods, we were also able to make causal inferences. 
However, some limitations should be considered when interpret-
ing our results. Firstly, our analysis was restricted to samples with 
European ancestry. Although it minimized bias arising from popu-
lation stratification, it could also reduce generalizability to other 
ethnic groups. Secondly, our metabolomics and GWAS data mainly 
relied on UKB, which provided us with enough statistical power 
but may not be representative to the general population due to the 
healthy selection (Fry et al.,  2017). Thirdly, because of the cross-
sectional design of the included observational studies, we were un-
able to delineate longitudinal relationships between biomarkers and 
changes in frailty levels. Fourthly, our observational and two-sample 
MR analyses only assumed linear relationships. Whether there may 
be nonlinear associations between metabolic biomarkers and frailty 
need to be examined in future studies. Finally, although the NMR 
metabolomics platform from Nightingale Health provides a compre-
hensive and standardized assessment of circulating metabolites, it 
does not capture the whole blood metabolome and includes only a 
limited number of metabolites. Some of the NMR biomarkers also 
lack specificity and are associated with a wide range of diseases 
(Julkunen et al., 2023). Hence, further investigation is needed to ex-
amine if other metabolites may also be related to frailty.

In conclusion, our results show that a large proportion of the 
blood metabolome is associated with frailty. We also present evi-
dence of the potential causal effects of GlycA, creatinine, and sev-
eral lipid traits on the FI. These findings provide novel insights into 
the metabolic underpinnings of frailty and outline the foundations 
for the continuing search of specific biomarkers that can facilitate 
early identification and management of frailty.

4  |  METHODS

4.1  |  Study population

The UKB was used as the discovery cohort. It is a population-based, 
cross-sectional study with half a million adults aged 37–73 years re-
cruited across the UK between 2006 and 2010 (Sudlow et al., 2015). 
At baseline assessment, participants provided biological samples 
and other health-related data via touch screen questionnaires and 
physical measurements in one of the 22 assessment centers across 
England, Wales, and Scotland. For the observational analysis, we ex-
cluded UKB individuals who had withdrawn from the study (n = 172), 
had missing data on the FI (n = 2293) and were self-reported as non-
white ethnicity (n = 28,260). From the 471,906 eligible UKB partici-
pants, we then selected two subsamples for the analyses of the NMR 
metabolomic biomarkers and clinical biomarkers, respectively. In the 
first subsample of 104,378 participants who had complete data on 
the 168 metabolomic biomarkers, we further removed samples that 
failed quality control (i.e., labeled as “high lactate,” “high pyruvate,” 
“low glucose,” or “low protein”), yielding n = 90,573 individuals in the 

analysis. The second subsample consisted of 67,488 participants 
who had complete data on the 32 clinical biomarkers.

Replication was conducted in two independent studies: the 
Swedish TwinGene study and the Finnish Health 2000 Survey. 
TwinGene is a subcohort study within the Swedish Twin Registry, 
which collected blood sample from 12,648 older Swedish twins in 
2004–2008 (Magnusson et al., 2013). Participants had previously 
participated in a telephone interview survey, the Screening Across 
the Lifespan Twin (SALT) study in 1998–2002. The Finnish Health 
2000 Survey is a nationally representative survey conducted during 
2000–2001, and its two-stage stratified cluster sample consisted of 
8028 persons aged ≥30 (Heistaro, 2008). The Health 2000 Survey 
included self-administered questionnaires, interviews, health exam-
inations, and laboratory measurements. The participation rate in the 
health examination was 85%. Using the same data processing proce-
dures as in the UKB, we excluded TwinGene and Health 2000 par-
ticipants who had missing data on the FI, or any of the metabolomic 
or clinical biomarkers, and failed quality control, yielding a total of 
11,025 TwinGene participants and 6073 Health 2000 participants 
in the analysis.

The UKB study had an ethical approval from the North West 
Multi-Centre Research Ethics Committee. The TwinGene study was 
approved by the Regional Ethics Review Board in Stockholm. The 
Health 2000 Survey was approved by the Ethical Committee for 
Research in Epidemiology and Public Health at the Hospital District 
of Helsinki and Uusimaa. A written informed consent was obtained 
from all participants.

4.2  |  Metabolic biomarker profiling

Circulating metabolomic biomarkers were measured using a tar-
geted high-throughput NMR metabolomics platform (Nightingale 
Health Ltd., Helsinki, Finland). Details on the first data release of 
the NMR metabolomic biomarkers in UKB have been described else-
where (Julkunen et al., 2023). Briefly, 168 metabolic measures were 
quantified from a random subset of 118,461 nonfasting baseline 
EDTA plasma samples. These biomarkers include clinically validated 
biomarkers, such as cholesterols, fatty acids, amino acids, and in-
flammation markers, as well as other emerging biomarkers such as 
lipoprotein subclasses. The 81 ratios derived from combinations of 
the 168 measured biomarkers were not included in this analysis due 
to unclear biological interpretations. The same 168 biomarkers were 
quantified from serum samples in the TwinGene and Health 2000 
participants, who had been instructed to fast overnight before blood 
collection.

Additionally, we studied 32 clinical biomarkers from serum and 
urine samples of UKB participants (rheumatoid factor and estradiol 
were not included due to high missingness). These biomarkers are 
diagnostic measures or risk factors for diseases, including cardio-
vascular, bone and joint, cancer, diabetes, renal, and liver-related 
biomarkers. Details of the assay methods and quality control are de-
scribed on the UKB website (https://bioba​nk.ndph.ox.ac.uk/showc​
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ase/showc​ase/docs/serum_bioch​emist​ry.pdf and http://bioba​
nk.ctsu.ox.ac.uk/cryst​al/cryst​al/docs/urine_assay.pdf). Details of 
the clinical biomarkers in TwinGene and Health 2000 have been de-
scribed previously (Kananen et al., 2023; Li et al., 2021).

Descriptive statistics of all the included biomarkers are summa-
rized in Table  S1. Spearman's correlations between the metabolic 
biomarkers were visualized as heatmaps. To enable comparison of 
effect sizes for biomarkers with different units and concentration 
ranges, we standardized all biomarkers to have mean = 0 and SD = 1 
within each sample.

4.3  |  Frailty measures

An FI has previously been created and validated in the UKB using 49 
self-reported deficit items from 11 categories (Williams et al., 2019), 
covering a range of diseases, signs, and symptoms from physiological 
and mental domains (items are shown in Table S4). After excluding 
individuals who had >20% missing data across the 49 items, we cal-
culated the FI as the sum of deficit divided by the total number of 
nonmissing items in each individual. The FIs in TwinGene (44-item, 
collected at baseline of the SALT study) (Li et al., 2019) and Health 
2000 (38-item) were constructed using the same procedure. In all 
analyses, we multiplied the FI by 100 and considered it as the per-
centage of deficit accumulation (0%–100%).

The FP was used as a secondary outcome in a sensitivity analy-
sis in the UKB. Based on the five frailty criteria in the Fried model 
(Fried et al., 2001), a modified FP has previously been constructed 
in the UKB (Hanlon et al., 2018). Weight loss, exhaustion, slowness, 
and low activity were assessed by self-reported questionnaire items, 
whereas weakness was assessed by the measured grip strength at 
baseline (scoring of the items are described in Table S5). An FP score 
was then calculated as the number of frailty criteria present in an in-
dividual. Although the FP is commonly categorized into three groups 
for assessing frailty in older adults aged ≥65 years (Fried et al., 2001), 
we considered it as ordinal variable from 0 to 5 to maximize statis-
tical power, due to the relatively young age (mean 56.8 years) and 
low prevalence of frailty in UKB (only ~3% of UKB participants were 
deemed frail by the FP).

4.4  |  Statistical analysis

4.4.1  |  Identification of frailty-associated 
biomarkers in UKB

In the discovery phase in UKB, we applied two approaches to iden-
tify frailty-associated metabolic biomarkers: 

1.	 Multivariable linear regression of FI on each biomarker. The 
base models were adjusted for age (continuous) and sex, and 
the fully adjusted models were additionally adjusted for base-
line assessment centers (England, Wales, and Scotland), BMI 

(continuous), smoking (never, previous, and current), alcohol 
consumption (less than 3 times a month, 1 to 4 times a week, 
daily or almost daily), education level (low, intermediate, and 
high), and Townsend deprivation index (continuous). All the 
estimates were calculated as β-coefficients per SD increase 
in biomarker values. To account for multiple testing of up to 
200 biomarkers in the large sample of UKB, we applied the 
stringent Bonferroni correction and considered p < 0.00025 (i.e., 
0.05/200) as statistically significant.

2.	 Feature selection using LASSO. Due to the large number of me-
tabolites and their high degree of collinearity, we applied the 
LASSO procedure (Tibshirani,  2011) to select the independent 
and most dominant biomarkers that contributed to the variance of 
the FI, as well as to minimize overfitting. Using FI as the depend-
ent variable, we fitted two LASSO linear regression models, one 
including 168 metabolomic biomarkers, and the other 32 clinical 
biomarkers as the explanatory variables. Age and sex were also 
included in both models. We used a 10-fold cross validation to 
optimize the λ regularization parameter. Estimates of the nonin-
formative features were then shrunk to zero, based on the λ value 
that gave a mean squared error within 1 standard error of the 
minimum (Figure S6).

As a sensitivity analysis, we used the FP as the outcome in linear 
regression models and compared the direction of the biomarker-FI 
and biomarker-FP associations. To examine whether the associa-
tions were influenced by outlier biomarker values, we repeated the 
linear regression analysis after excluding values outside 5 interquar-
tile ranges from the median. Furthermore, we performed subgroup 
analyses of the biomarker-FI associations by age at baseline (<60 
vs. ≥60 years) and sex (women vs. men). As our main analyses were 
constrained to white UKB participants, we also repeated the anal-
ysis in non-white ethnic groups to test if the associations differ by 
ethnicity. Finally, as MR implicated potential causal effects of GlycA 
and creatinine on the FI, we additionally stratified the observational 
analyses between GlycA and FI by CRP and LDL-cholesterol cate-
gories, and between creatinine and FI by chronic kidney disease to 
examine whether the associations may be influenced by their related 
traits (Connelly et al., 2017; Levey et al., 2009).

4.4.2  |  Replication in TwinGene and health 2000

For the biomarkers that (i) passed the Bonferroni-corrected thresh-
old (p < 0.00025) in multivariable linear regression models and (ii) 
had nonzero coefficients from LASSO models, we performed rep-
lication in TwinGene and Health 2000 using FI as the outcome. 
Associations were assessed using linear regression models adjusted 
for age, sex, BMI, smoking, education, and alcohol consumption. 
The models in TwinGene were also accounted for twin relatedness 
(i.e., cluster-robust standard errors). Results from the replication 
cohorts were meta-analyzed using a DerSimonian-Laird random-
effects model (DerSimonian & Laird, 1986), where associations with 
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p < 0.05 were considered as “replicated”. The biomarkers that were 
replicated or unavailable in replication cohort were then proceeded 
to MR analyses.

4.4.3  | Mendelian randomization

Two-sample MR analyses were performed to investigate causal 
relationships between the selected metabolites and frailty. Only 
genetic data on European-ancestry individuals were included to 
ensure comparability of the SNPs. Details on the datasets used 
are provided in Table S11. Briefly, SNPs associated with the bio-
markers (exposures) were taken from the largest available GWASs, 
namely UKB (n = 115,078, for NMR metabolomic biomarkers) 
(Borges et al., 2022), Meta-Analyses of Glucose and Insulin-related 
traits Consortium (n = 123,665, for HbA1c) (Wheeler et al., 2017), 
Cohorts for Heart and Aging Research in Genomic Epidemiology 
Consortium (n = 204,402, for CRP) (Ligthart et al.,  2018), and 
Global Lipids Genetics Consortium (n = 187,365, for total cho-
lesterol, LDL-cholesterol, and triglycerides) (Willer et al.,  2013). 
For the remaining clinical biomarkers, we performed a GWAS in 
a randomly selected 50% of the UKB sample who were eligible 
and passed quality control (n = up to 204,402; excluded indi-
viduals with non-European ancestry, consent withdrawal, sex 
chromosome aneuploidy, extreme heterozygosity or missing-
ness, and without genotype and phenotype data). A mixed linear 
model-based GWAS analysis (“fastGWA”) was used, which is an 
efficient method to control for relatedness between individuals 
by a sparse genetic relationship matrix (Jiang et al.,  2019). Age, 
sex, genotyping array, and the first 10 principal components were 
included as covariates. Following the same pipeline, we performed 
a GWAS for the FI and FP in UKB to obtain summary statistics for 
the SNP-frailty (outcome) associations. The GWAS for frailty was 
performed in UKB subsamples that did not overlap with the expo-
sure GWASs to avoid biasing the two-sample MR analysis (Burgess 
et al., 2016).

To obtain valid causal estimates in MR, genetic variants that 
are used as IVs should fulfill three assumptions: (i) they are ro-
bustly associated with the exposure (relevance), (ii) they are inde-
pendent of any confounders (independence), and (iii) they affect 
the outcome only through the exposure (exclusion restriction) 
(Davies et al., 2018). We selected SNPs as IVs if they were associ-
ated with the biomarker of interest at a genome-wide significance 
level (p < 5 × 10−8) and were not in linkage disequilibrium with 
other SNPs (r2 < 0.001 within a clumping window of 10,000 kb). 
Palindromic SNPs with minor allele frequency >0.42 or SNPs 
not available in the outcome GWASs were excluded. Instrument 
strength was evaluated by the F-statistic (Davies et al., 2018). The 
multiplicative random-effects IVW-MR method was applied as the 
primary approach, which provides unbiased estimates if all the IVs 
are valid or if the overall pleiotropy is balanced to be zero (Burgess 
et al., 2013). The Cochran's Q test was used to assess heteroge-
neity across the IVs. To correct the main IVW results for multiple 

testing (a total of 49 biomarkers × 2 frailty measures = 98 tests), 
we applied a 5% FDR correction (Benjamini & Hochberg,  1995) 
and considered p < 0.011 as statistically significant. To test for 
robustness of our results, we conducted MR analyses that relax 
assumptions on horizontal pleiotropy: (i) MR-Egger, which allows 
for pleiotropic effects under the instrument strength independent 
of direct effect (InSIDE) assumption, with an intercept term in-
dicating the average pleiotropic effect (Bowden et al., 2015); (ii) 
weighted median, which assumes over 50% of the IVs are valid 
(Bowden et al., 2016); (iii) weighted mode, which assumes a plu-
rality of IVs are valid (Hartwig et al., 2017); and (iv) MR-PRESSO, 
which detects and corrects for horizontal pleiotropy by excluding 
outliers (Verbanck et al., 2018). As a sensitivity analysis, we used 
a smaller set of SNPs that were not associated with other metab-
olomic biomarkers at genome-wide significance as the IVs (i.e., 
excluding potentially pleiotropic SNPs). Finally, to examine if the 
observed associations were driven by the individual FI items, we 
repeated the MR analysis using 11 modified FIs that were stripped 
of items from each category as the outcomes (Table S4).

4.4.4  |  Co-twin control analysis in TwinGene

Taking the advantage of twin data in TwinGene, we employed the 
co-twin control method to elucidate whether a biomarker-FI asso-
ciation may be attributable to familial confounding (shared genetic 
or shared environmental factors) (McGue et al., 2010). This method 
assumes that MZ and DZ twins share 100% and ~ 50% of their seg-
regating genes, respectively, and that both MZ and DZ twins share 
the same family environment. If the association is not influenced by 
familial influences (i.e., in line with a causal hypothesis), the effect 
sizes should remain similar across the population-level and within-
pair estimates. If the association is explained by shared genetic fac-
tors (pleiotropy), we would expect an attenuation of the estimate to 
null within MZ twin pairs, while the estimate within DZ twin pairs 
is expected to lie between the population-level and MZ estimates. 
If the association is explained by shared environmental factors, a 
similar attenuation would be expected in both DZ and MZ twins. 
Conditional generalized estimating equation models were used to 
obtain within-twin-pair estimates. All models were adjusted for age, 
sex, BMI, smoking, alcohol consumption, and years of education.
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