14 research outputs found

    Systematic Review with Meta-Analysis: Diagnostic Accuracy of Pro-C3 for Hepatic Fibrosis in Patients with Non-Alcoholic Fatty Liver Disease

    Get PDF
    The prevalence and severity of non-alcoholic fatty liver disease (NAFLD) is increasing, yet adequately validated tests for care paths are limited and non-invasive markers of disease progression are urgently needed. The aim of this work was to summarize the performance of Pro-C3, a biomarker of active fibrogenesis, in detecting significant fibrosis (F ≥ 2), advanced fibrosis (F ≥ 3), cirrhosis (F4) and non-alcoholic steatohepatitis (NASH) in patients with NAFLD. A sensitive search of five databases was performed in July 2021. Studies reporting Pro-C3 measurements and liver histology in adults with NAFLD without co-existing liver diseases were eligible. Meta-analysis was conducted by applying a bivariate random effects model to produce summary estimates of Pro-C3 accuracy. From 35 evaluated reports, eight studies met our inclusion criteria; 1568 patients were included in our meta-analysis of significant fibrosis and 2058 in that of advanced fibrosis. The area under the summary curve was 0.81 (95% CI 0.77–0.84) in detecting significant fibrosis and 0.79 (95% CI 0.73–0.82) for advanced fibrosis. Our results support Pro-C3 as an important candidate biomarker for non-invasive assessment of liver fibrosis in NAFLD. Further direct comparisons with currently recommended non-invasive tests will demonstrate whether Pro-C3 panels can outperform these tests, and improve care paths for patients with NAFLD

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BACKGROUND: Histologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD. METHODS: This was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0-4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0-2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226. FINDINGS: Of 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44-63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33-91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62-0·81) for histology, 0·76 (0·70-0·83) for LSM-VCTE, 0·74 (0·64-0·82) for FIB-4, and 0·70 (0·63-0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression. INTERPRETATION: Simple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases. FUNDING: Innovative Medicines Initiative 2

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis.

    Get PDF
    BACKGROUND Histologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD. METHODS This was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0-4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0-2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226. FINDINGS Of 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44-63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33-91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62-0·81) for histology, 0·76 (0·70-0·83) for LSM-VCTE, 0·74 (0·64-0·82) for FIB-4, and 0·70 (0·63-0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression. INTERPRETATION Simple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases. FUNDING Innovative Medicines Initiative 2

    Impact of COVID-19 on cardiovascular testing in the United States versus the rest of the world

    Get PDF
    Objectives: This study sought to quantify and compare the decline in volumes of cardiovascular procedures between the United States and non-US institutions during the early phase of the coronavirus disease-2019 (COVID-19) pandemic. Background: The COVID-19 pandemic has disrupted the care of many non-COVID-19 illnesses. Reductions in diagnostic cardiovascular testing around the world have led to concerns over the implications of reduced testing for cardiovascular disease (CVD) morbidity and mortality. Methods: Data were submitted to the INCAPS-COVID (International Atomic Energy Agency Non-Invasive Cardiology Protocols Study of COVID-19), a multinational registry comprising 909 institutions in 108 countries (including 155 facilities in 40 U.S. states), assessing the impact of the COVID-19 pandemic on volumes of diagnostic cardiovascular procedures. Data were obtained for April 2020 and compared with volumes of baseline procedures from March 2019. We compared laboratory characteristics, practices, and procedure volumes between U.S. and non-U.S. facilities and between U.S. geographic regions and identified factors associated with volume reduction in the United States. Results: Reductions in the volumes of procedures in the United States were similar to those in non-U.S. facilities (68% vs. 63%, respectively; p = 0.237), although U.S. facilities reported greater reductions in invasive coronary angiography (69% vs. 53%, respectively; p < 0.001). Significantly more U.S. facilities reported increased use of telehealth and patient screening measures than non-U.S. facilities, such as temperature checks, symptom screenings, and COVID-19 testing. Reductions in volumes of procedures differed between U.S. regions, with larger declines observed in the Northeast (76%) and Midwest (74%) than in the South (62%) and West (44%). Prevalence of COVID-19, staff redeployments, outpatient centers, and urban centers were associated with greater reductions in volume in U.S. facilities in a multivariable analysis. Conclusions: We observed marked reductions in U.S. cardiovascular testing in the early phase of the pandemic and significant variability between U.S. regions. The association between reductions of volumes and COVID-19 prevalence in the United States highlighted the need for proactive efforts to maintain access to cardiovascular testing in areas most affected by outbreaks of COVID-19 infection

    Performance of non-invasive tests and histology for the prediction of clinical outcomes in patients with non-alcoholic fatty liver disease: an individual participant data meta-analysis

    Get PDF
    BackgroundHistologically assessed liver fibrosis stage has prognostic significance in patients with non-alcoholic fatty liver disease (NAFLD) and is accepted as a surrogate endpoint in clinical trials for non-cirrhotic NAFLD. Our aim was to compare the prognostic performance of non-invasive tests with liver histology in patients with NAFLD.MethodsThis was an individual participant data meta-analysis of the prognostic performance of histologically assessed fibrosis stage (F0–4), liver stiffness measured by vibration-controlled transient elastography (LSM-VCTE), fibrosis-4 index (FIB-4), and NAFLD fibrosis score (NFS) in patients with NAFLD. The literature was searched for a previously published systematic review on the diagnostic accuracy of imaging and simple non-invasive tests and updated to Jan 12, 2022 for this study. Studies were identified through PubMed/MEDLINE, EMBASE, and CENTRAL, and authors were contacted for individual participant data, including outcome data, with a minimum of 12 months of follow-up. The primary outcome was a composite endpoint of all-cause mortality, hepatocellular carcinoma, liver transplantation, or cirrhosis complications (ie, ascites, variceal bleeding, hepatic encephalopathy, or progression to a MELD score ≥15). We calculated aggregated survival curves for trichotomised groups and compared them using stratified log-rank tests (histology: F0–2 vs F3 vs F4; LSM: 2·67; NFS: 0·676), calculated areas under the time-dependent receiver operating characteristic curves (tAUC), and performed Cox proportional-hazards regression to adjust for confounding. This study was registered with PROSPERO, CRD42022312226.FindingsOf 65 eligible studies, we included data on 2518 patients with biopsy-proven NAFLD from 25 studies (1126 [44·7%] were female, median age was 54 years [IQR 44–63), and 1161 [46·1%] had type 2 diabetes). After a median follow-up of 57 months [IQR 33–91], the composite endpoint was observed in 145 (5·8%) patients. Stratified log-rank tests showed significant differences between the trichotomised patient groups (p<0·0001 for all comparisons). The tAUC at 5 years were 0·72 (95% CI 0·62–0·81) for histology, 0·76 (0·70–0·83) for LSM-VCTE, 0·74 (0·64–0·82) for FIB-4, and 0·70 (0·63–0·80) for NFS. All index tests were significant predictors of the primary outcome after adjustment for confounders in the Cox regression.InterpretationSimple non-invasive tests performed as well as histologically assessed fibrosis in predicting clinical outcomes in patients with NAFLD and could be considered as alternatives to liver biopsy in some cases

    Non-alcoholic fatty liver disease: a multidisciplinary approach towards a cardiometabolic liver disease

    No full text
    Non-alcoholic fatty liver disease (NAFLD) is a growing health problem with a global prevalence of over 25% and prevalence rates of over 60% in high-risk populations. It is considered the hepatic component of the metabolic syndrome and is associated with an increased risk of the development of various liver-associated and cardiometabolic complications. Given the complexity of NAFLD and associated comorbidities and complications, treatment requires interventions from a variety of different healthcare specialties. However, many clinicians are currently insufficiently aware of the potential harm and severity of NAFLD and associated comorbidities, complications and the steps that should be taken when NAFLD is suspected. Recognizing which patients suffer from non-progressive simple steatosis, metabolically active NASH with high risk of developing cardiovascular disease and which patients have a high risk of developing cirrhosis and hepatocellular carcinoma is important. Unfortunately, this can be difficult and guidelines towards the optimal diagnostic and therapeutic approach are ambivalent. Here we review the pathogenesis, diagnostics and treatment of NAFLD and discuss how multidisciplinary care path development could move forward

    Systematic review with meta-analyses: Diagnostic accuracy of fibrometer tests in patients with non-alcoholic fatty liver disease

    Get PDF
    Early detection of liver fibrosis is crucial to select the correct care path for patients with non-alcoholic fatty liver disease (NAFLD). Here, we systematically review the evidence on the performance of FibroMeter versions in detecting different levels of fibrosis in patients with NAFLD. We searched four databases (Medline, Embase, the Cochrane library, and Web of Science) to find studies that included adults with NAFLD and biopsy-confirmed fibrosis (F1 to F4), compared with any version of FibroMeter. Two independent researchers screened the references, collected the data, and assessed the methodological quality of the included studies. We used a bivariate logit-normal random effects model to produce meta-analyses. From 273 references, 12 studies were eligible for inclusion, encompassing data from 3425 patients. Meta-analyses of the accuracy in detecting advanced fibrosis (F ≥ 3) were conducted for FibroMeter Virus second generation (V2G), NAFLD, and vibration controlled transient elaFS3stography (VCTE). FibroMeter VCTE showed the best diagnostic accuracy in detecting advanced fibrosis (sensitivity: 83.5% (95%CI 0.58–0.94); specificity: 91.1% (95%CI 0.89–0.93)), followed by FibroMeter V2G (sensitivity: 83.1% (95%CI 0.73–0.90); specificity: 84.4% (95%CI 0.62–0.95)) and FibroMeter NAFLD (sensitivity: 71.7% (95%CI 0.63–0.79); specificity: 82.8% (95%CI 0.71–0.91)). No statistically significant differences were found between the different FibroMeter versions. FibroMeter tests showed acceptable sensitivity and specificity in detecting advanced fibrosis in patients with NAFLD, but an urge to conduct head-to-head comparison studies in patients with NAFLD of the different FibroMeter tests remains

    Self-supervised neural network improves tri-exponential intravoxel incoherent motion model fitting compared to least-squares fitting in non-alcoholic fatty liver disease

    No full text
    Recent literature suggests that tri-exponential models may provide additional information and fit liver intravoxel incoherent motion (IVIM) data more accurately than conventional bi-exponential models. However, voxel-wise fitting of IVIM results in noisy and unreliable parameter maps. For bi-exponential IVIM, neural networks (NN) were able to produce superior parameter maps than conventional least-squares (LSQ) generated images. Hence, to improve parameter map quality of tri-exponential IVIM, we developed an unsupervised physics-informed deep neural network (IVIM3-NET). We assessed its performance in simulations and in patients with non-alcoholic fatty liver disease (NAFLD) and compared outcomes with bi-exponential LSQ and NN fits and tri-exponential LSQ fits. Scanning was performed using a 3.0T free-breathing multi-slice diffusion-weighted single-shot echo-planar imaging sequence with 18 b-values. Images were analysed for visual quality, comparing the bi- and tri-exponential IVIM models for LSQ fits and NN fits using parameter-map signal-to-noise ratios (SNR) and adjusted R2. IVIM parameters were compared to histological fibrosis, disease activity and steatosis grades. Parameter map quality improved with bi- and tri-exponential NN approaches, with a significant increase in average parameter-map SNR from 3.38 to 5.59 and 2.45 to 4.01 for bi- and tri-exponential LSQ and NN models respectively. In 33 out of 36 patients, the tri-exponential model exhibited higher adjusted R2 values than the bi-exponential model. Correlating IVIM data to liver histology showed that the bi- and tri-exponential NN outperformed both LSQ models for the majority of IVIM parameters (10 out of 15 significant correlations). Overall, our results support the use of a tri-exponential IVIM model in NAFLD. We show that the IVIM3-NET can be used to improve image quality compared to a tri-exponential LSQ fit and provides promising correlations with histopathology similar to the bi-exponential neural network fit, while generating potentially complementary additional parameters

    Intrapancreatic fat deposition is unrelated to liver steatosis in metabolic dysfunction-associated steatotic liver disease

    No full text
    Background &amp; Aims: Individuals with obesity may develop intrapancreatic fat deposition (IPFD) and fatty pancreas disease (FPD). Whether this causes inflammation and fibrosis and leads to pancreatic dysfunction is less established than for liver damage in metabolic dysfunction-associated steatotic liver disease (MASLD). Moreover, the interrelations of FPD and MASLD are poorly understood. Therefore, we aimed to assess IPFD and fibro-inflammation in relation to pancreatic function and liver disease severity in individuals with MASLD. Methods: Seventy-six participants from the Amsterdam MASLD-MASH cohort (ANCHOR) study underwent liver biopsy and multiparametric MRI of the liver and pancreas, consisting of proton-density fat fraction sequences, T1 mapping and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI). Results: The prevalence of FPD was 37.3%. There was a clear correlation between pancreatic T1 relaxation time, which indicates fibro-inflammation, and parameters of glycemic dysregulation, namely HbA1c (R = 0.59; p <0.001), fasting glucose (R = 0.51; p <0.001) and the presence of type 2 diabetes (mean 802.0 ms vs. 733.6 ms; p <0.05). In contrast, there was no relation between IPFD and hepatic fat content (R = 0.03; p = 0.80). Pancreatic IVIM diffusion (IVIM-D) was lower in advanced liver fibrosis (p <0.05) and pancreatic perfusion (IVIM-f), reflecting vessel density, inversely correlated to histological MASLD activity (p <0.05). Conclusions: Consistent relations exist between pancreatic fibro-inflammation on MRI and endocrine function in individuals with MASLD. However, despite shared dysmetabolic drivers, our study suggests IPFD is a separate pathophysiological process from MASLD. Impact and implications: Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease worldwide and 68% of people with type 2 diabetes have MASLD. However, fat infiltration and inflammation in the pancreas are understudied in individuals with MASLD. In this cross-sectional MRI study, we found no relationship between fat accumulation in the pancreas and liver in a cohort of patients with MASLD. However, our results show that inflammatory and fibrotic processes in the pancreas may be interrelated to features of type 2 diabetes and to the severity of liver disease in patients with MASLD. Overall, the results suggest that pancreatic endocrine dysfunction in individuals with MASLD may be more related to glucotoxicity than to lipotoxicity. Clinical trial number: NTR7191 (Dutch Trial Register)
    corecore