34 research outputs found

    Cactaceae at Caryophyllales.org- A dynamic online species-level taxonomic backbone for the family

    Get PDF
    This data paper presents a largely phylogeny-based online taxonomic backbone for the Cactaceae compiled from literature and online sources using the tools of the EDIT Platform for Cybertaxonomy. The data will form a contribution of the Caryophyllales Network for the World Flora Online and serve as the base for further integration of research results from the systematic research community. The final aim is to treat all effectively published scientific names in the family. The checklist includes 150 accepted genera, 1851 accepted species, 91 hybrids, 746 infraspecific taxa (458 heterotypic, 288 with autonyms), 17,932 synonyms of accepted taxa, 16 definitely excluded names, 389 names of uncertain application, 672 unresolved names and 454 names belonging to (probably artificial) named hybrids, totalling 22,275 names. The process of compiling this database is described and further editorial rules for the compilation of the taxonomic backbone for the Caryophyllales Network are proposed. A checklist depicting the current state of the taxonomic backbone is provided as supplemental material. All results are also available online on the website of the Caryophyllales Network and will be constantly updated and expanded in the future. Citation: Korotkova N., Aquino D., Arias S., Eggli U., Franck A., GĂłmez-Hinostrosa C., Guerrero P. C., HernĂĄndez H. M., Kohlbecker A., Köhler M., Luther K., Majure L. C., MĂŒller A., Metzing D., Nyffeler R., SĂĄnchez D., Schlumpberger B. & Berendsohn W. G. 2021: Cactaceae at Caryophyllales.org- A dynamic online species-level taxonomic backbone for the family.-Willdenowia 51: 251-270. Version of record first published online on 31 August 2021 ahead of inclusion in August 2021 issue. Data published through: Http://caryophyllales.org/cactaceae/Checklis

    Identification of the Begomoviruses Squash Leaf Curl Virus and Watermelon Chlorotic Stunt Virus in Various Plant Samples in North America

    Get PDF
    Geminiviruses are a group of plant-infecting viruses with single-stranded DNA genomes. Within this family, viruses in the genus Begomovirus are known to have a worldwide distribution causing a range of severe diseases in a multitude of dicotyledonous plant species. Begomoviruses are transmitted by the whitefly Bemisia tabaci, and their ssDNA genomes can be either monopartite or bipartite. As part of a viral survey, various plants including those in the families Alliaceae, Amaranthaceae, Apiaceae, Asteraceae, Brassicaceae, Cactaceae, Cucurbitaceae, Lamiaceae, Lauraceae, Malvaceae, Oleaceae and Solanaceae were sampled and screened for begomoviruses using both a high-throughput sequencing and a begomovirus-specific primer pair approach. Based on the sequences derived using these approaches, the full-length genome of various begomoviruses were amplified from plants using abutting primers. Squash leaf curl virus (SLCV) and watermelon chlorotic stunt virus (WCSV) were identified in Cactaceae (n = 25), Solanaceae (n = 7), Cucurbitaceae (n = 2) and Lamiaceae (n = 1) samples. WCSV is an Old World bipartite begomovirus that has only recently been discovered infecting watermelons in the Americas. Our discovery of WCSV in the USA is the first indication that it has reached this country and indicates that this virus might be widespread throughout North America. Phylogenetic analysis suggests WCSV was introduced to the New World twice. The detection of begomoviruses in cactus plants suggests possible spillover events from agricultural areas into native vegetation. Since WCSV and SLCV have previously been found in mixed infections, pseudo-recombination infection experiments were conducted. We demonstrate that WCSV DNA-B is successfully trans-replicated by SLCV DNA-A despite very low degree of similarity between the replication-associated iterative sequences present in their common region, an essential feature for binding of the replication associated protein. This study highlights the importance of viral surveys for the detection of spillover events into native vegetation, but also suggests the need for more surveillance of WCSV in the USA, as this virus is a serious threat to watermelon cultivation in the Middle East

    From cacti to carnivores: Improved phylotranscriptomic sampling and hierarchical homology inference provide further insight into the evolution of Caryophyllales

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/1/ajb21069.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/2/ajb21069_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/3/ajb21069-sup-0002-AppendixS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/4/ajb21069-sup-0005-AppendixS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/143660/5/ajb21069-sup-0001-AppendixS1.pd

    New World Cactaceae Plants Harbor Diverse Geminiviruses

    Get PDF
    The family Cactaceae comprises a diverse group of typically succulent plants that are native to the American continent but have been introduced to nearly all other continents, predominantly for ornamental purposes. Despite their economic, cultural, and ecological importance, very little research has been conducted on the viral community that infects them. We previously identified a highly divergent geminivirus that is the first known to infect cacti. Recent research efforts in non-cultivated and asymptomatic plants have shown that the diversity of this viral family has been under-sampled. As a consequence, little is known about the effects and interactions of geminiviruses in many plants, such as cacti. With the objective to expand knowledge on the diversity of geminiviruses infecting cacti, we used previously acquired high-throughput sequencing results to search for viral sequences using BLASTx against a viral RefSeq protein database. We identified two additional sequences with similarity to geminiviruses, for which we designed abutting primers and recovered full-length genomes. From 42 cacti and five scale insects, we derived 42 complete genome sequences of a novel geminivirus species that we have tentatively named Opuntia virus 2 (OpV2) and 32 genomes of an Opuntia-infecting becurtovirus (which is a new strain of the spinach curly top Arizona virus species). Interspecies recombination analysis of the OpV2 group revealed several recombinant regions, in some cases spanning half of the genome. Phylogenetic analysis demonstrated that OpV2 is a novel geminivirus more closely related to viruses of the genus Curtovirus, which was further supported by the detection of three recombination events between curtoviruses and OpV2. Both OpV2 and Opuntia becurtoviruses were identified in mixed infections, which also included the previously characterized Opuntia virus 1. Viral quantification of the co-infected cactus plants compared with single infections did not show any clear trend in viral dynamics that might be associated with the mixed infections. Using experimental Rhizobium-mediated inoculations, we found that the initial accumulation of OpV2 is facilitated by co-infection with OpV1. This study shows that the diversity of geminiviruses that infect cacti is under-sampled and that cacti harbor diverse geminiviruses. The detection of the Opuntia becurtoviruses suggests spill-over events between viruses of cultivated species and native vegetation. The threat this poses to cacti needs to be further investigated

    Diverse genomoviruses representing twenty-nine species identified associated with plants

    Get PDF
    Genomoviruses (family Genomoviridae) are circular single-stranded DNA viruses that have been mainly identifed through metagenomics studies in a wide variety of samples from various environments. Here, we describe 98 genomes of genomoviruses found associated with members of 19 plant families from Australia, Brazil, France, South Africa and the USA. These 98 genomoviruses represent 29 species, 26 of which are new, in the genera Gemykolovirus (n = 37), Gemyduguivirus (n = 9), Gemygorvirus (n = 8), Gemykroznavirus (n = 6), Gemycircularvirus (n = 21) and Gemykibivirus (n = 17)

    The ecology and morphological variation of Opuntia (Cactaceae) species in the mid-south, United States

    Get PDF
    Opuntia species have been poorly studied ecologically and taxonomically in the eastern United States. This study deals with the ecology of Opuntia species in the mid-south United States and covers not only the high degree of morphological variation exhibited by taxa, but also the taxonomy and distributions of the group for Mississippi. The taxa in the mid-south have distinct habitat preferences and can be separated based on habitat characterization. Information from this work provides valuable data useful in predicting possible routes that an invasive species, Cactoblastis cactorum (the cactus moth), might use in its potential westward migration. Phenotypic plasticity exhibited by Opuntia pusilla subjected to experimental conditions exemplifies the care that should be taken when making species delineations. Spine production in certain species is more a function of abiotic environmental pressures than genetic heritage. Two taxa that previously were put into synonymy with other species are recognized from this work

    THE VASCULAR FLORA OF THE CHUNKY RIVER (MISSISSIPPI)

    No full text
    Volume: 1Start Page: 1179End Page: 120

    A New Approach Using Targeted Sequence Capture for Phylogenomic Studies across Cactaceae

    No full text
    Relationships within the major clades of Cactaceae are relatively well known based on DNA sequence data mostly from the chloroplast genome. Nevertheless, some nodes along the backbone of the phylogeny, and especially generic and species-level relationships, remain poorly resolved and are in need of more informative genetic markers. In this study, we propose a new approach to solve the relationships within Cactaceae, applying a targeted sequence capture pipeline. We designed a custom probe set for Cactaceae using MarkerMiner and complemented it with the Angiosperms353 probe set. We then tested both probe sets against 36 different transcriptomes using Hybpiper preferentially retaining phylogenetically informative loci and reconstructed the relationships using RAxML-NG and Astral. Finally, we tested each probe set through sequencing 96 accessions, representing 88 species across Cactaceae. Our preliminary analyses recovered a well-supported phylogeny across Cactaceae with a near identical topology among major clade relationships as that recovered with plastome data. As expected, however, we found incongruences in relationships when comparing our nuclear probe set results to plastome datasets, especially at the generic level. Our results reveal great potential for the combination of Cactaceae-specific and Angiosperm353 probe set application to improve phylogenetic resolution for Cactaceae and for other studies
    corecore