517 research outputs found

    Oil curse, economic growth and trade openness

    Get PDF
    An important economic paradox that frequently arises in the economic literature is that countries with abundant natural resources are poor in terms of real gross domestic product per capita. This paradox, known as the ‘resource curse’, is contrary to the conventional intuition that natural resources help to improve economic growth and prosperity. Using panel data for 95 countries, this study revisits the resource curse paradox in terms of oil resources abundance for the period 1980–2017. In addition, the study examines the role of trade openness in influencing the relationship between oil abundance and economic growth. The study finds that trade openness is a possible avenue to reduce the resource curse. Trade openness allows countries to obtain competitive prices for their resources in the international market and access advanced technologies to extract resources more efficiently. Therefore, natural resource–rich economies can reduce the resource curse by opening themselves to international trade

    Inter-Cellular Variation in DNA Content of Entamoeba histolytica Originates from Temporal and Spatial Uncoupling of Cytokinesis from the Nuclear Cycle

    Get PDF
    Accumulation of multiple copies of the genome in a single nucleus and several nuclei in a single cell has previously been noted in Entamoeba histolytica, contributing to the genetic heterogeneity of this unicellular eukaryote. In this study, we demonstrate that this genetic heterogeneity is an inherent feature of the cell cycle of this organism. Chromosome segregation occurs on a variety of novel microtubular assemblies including multi-polar spindles. Cytokinesis in E. histolytica is completed by the mechanical severing of a thin cytoplasmic bridge, either independently or with the help of neighboring cells. Importantly, cytokinesis is uncoupled from the nuclear division cycle, both temporally and spatially, leading to the formation of unequal daughter cells. Sorting of euploid and polyploid cells showed that each of these sub-populations acquired heterogeneous DNA content upon further growth. Our study conclusively demonstrates that genetic heterogeneity originates from the unique mode of cell division events in this protist

    Hybrid molecular-continuum simulations of water flow through carbon nanotube membranes of realistic thickness

    Get PDF
    We present new hybrid molecular-continuum simulations of water flow through filtration membranes. The membranes consist of aligned carbon nanotubes (CNTs) of high aspect ratio, where the tube diameters are ~1–2 nm and the tube lengths (i.e. the membrane thicknesses) are 2–6 orders of magnitude larger than this. The flow in the CNTs is subcontinuum, meaning standard continuum fluid equations cannot adequately model the flow; also, full molecular dynamics (MD) simulations are too computationally expensive for modelling these membrane thicknesses. However, various degrees of scale separation in both time and space in this problem can be exploited by a multiscale method: we use the serial-network internal-flow multiscale method (SeN-IMM). Our results from this hybrid method compare very well with full MD simulations of flow cases up to a membrane thickness of 150 nm, beyond which any full MD simulation is computationally intractable. We proceed to use the SeN-IMM to predict the flow in membranes of thicknesses 150 nm–2 μm, and compare these results with both a modified Hagen–Poiseuille flow equation and experimental results for the same membrane configuration. We also find good agreement between experimental and our numerical results for a 1-mm-thick membrane made of CNTs with diameters around 1.1 nm. In this case, the hybrid simulation is orders of magnitude quicker than a full MD simulation would be

    How consistent are the transcriptome changes associated with cold acclimation in two species of the Drosophila virilis group?

    Get PDF
    This work was financially support by a Marie Curie Initial Training Network grant, “Understanding the evolutionary origin of biological diversity” (ITN-2008–213780 SPECIATION), grants from the Academy of Finland to A.H. (project 132619) and M.K. (projects 268214 and 272927), a grant from NERC, UK to M.G.R. (grant NE/J020818/1), and NERC, UK PhD studentship to D.J.P. (NE/I528634/1).For many organisms the ability to cold acclimate with the onset of seasonal cold has major implications for their fitness. In insects, where this ability is widespread, the physiological changes associated with increased cold tolerance have been well studied. Despite this, little work has been done to trace changes in gene expression during cold acclimation that lead to an increase in cold tolerance. We used an RNA-Seq approach to investigate this in two species of the Drosophila virilis group. We found that the majority of genes that are differentially expressed during cold acclimation differ between the two species. Despite this, the biological processes associated with the differentially expressed genes were broadly similar in the two species. These included: metabolism, cell membrane composition, and circadian rhythms, which are largely consistent with previous work on cold acclimation/cold tolerance. In addition, we also found evidence of the involvement of the rhodopsin pathway in cold acclimation, a pathway that has been recently linked to thermotaxis. Interestingly, we found no evidence of differential expression of stress genes implying that long-term cold acclimation and short-term stress response may have a different physiological basis.PostprintPeer reviewe

    Comparative Analysis of Dengue and Zika Outbreaks Reveals Differences by Setting and Virus.

    Get PDF
    The pacific islands of Micronesia have experienced several outbreaks of mosquito-borne diseases over the past decade. In outbreaks on small islands, the susceptible population is usually well defined, and there is no co-circulation of pathogens. Because of this, analysing such outbreaks can be useful for understanding the transmission dynamics of the pathogens involved, and particularly so for yet understudied pathogens such as Zika virus. Here, we compared three outbreaks of dengue and Zika virus in two different island settings in Micronesia, the Yap Main Islands and Fais, using a mathematical model of transmission dynamics and making full use of commonalities in disease and setting between the outbreaks. We found that the estimated reproduction numbers for Zika and dengue were similar when considered in the same setting, but that, conversely, reproduction number for the same disease can vary considerably by setting. On the Yap Main Islands, we estimated a reproduction number of 8.0-16 (95% Credible Interval (CI)) for the dengue outbreak and 4.8-14 (95% CI) for the Zika outbreak, whereas for the dengue outbreak on Fais our estimate was 28-102 (95% CI). We further found that the proportion of cases of Zika reported was smaller (95% CI 1.4%-1.9%) than that of dengue (95% CI: 47%-61%). We confirmed these results in extensive sensitivity analysis. They suggest that models for dengue transmission can be useful for estimating the predicted dynamics of Zika transmission, but care must be taken when extrapolating findings from one setting to another
    corecore