19 research outputs found

    Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice

    Get PDF
    The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel–deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel–deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4^+ and CD8^+ T cells from c-Rel–deficient NOD mice showed significantly decreased T-cell receptor–induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel–competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel–deficient NOD mice. The results suggest that c-Rel–dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel–dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell–dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity

    Bud13 Promotes a Type I Interferon Response By Countering Intron Retention in Irf7

    Get PDF
    Intron retention (IR) has emerged as an important mechanism of gene expression control, but the factors controlling IR events remain poorly understood. We observed consistent IR in one intron of the Irf7 gene and identified BUD13 as an RNA-binding protein that acts at this intron to increase the amount of successful splicing. Deficiency in BUD13 was associated with increased IR, decreased mature Irf7 transcript and protein levels, and consequently a dampened type I interferon response, which compromised the ability of BUD13-deficient macrophages to withstand vesicular stomatitis virus (VSV) infection. Global analysis of BUD13 knockdown and BUD13 cross-linking to RNA revealed a subset of introns that share many characteristics with the one found in Irf7 and are spliced in a BUD13-dependent manner. Deficiency of BUD13 led to decreased mature transcript from genes containing such introns. Thus, by acting as an antagonist to IR, BUD13 facilitates the expression of genes at which IR occurs

    High-throughput single-molecule optofluidic analysis

    Get PDF
    We describe a high-throughput, automated single-molecule measurement system, equipped with microfluidics. The microfluidic mixing device has integrated valves and pumps to accurately accomplish titration of biomolecules with picoliter resolution. We demonstrate that the approach enabled rapid sampling of biomolecule conformational landscape and of enzymatic activity, in the form of transcription by Escherichia coli RNA polymerase, as a function of the chemical environment

    Deficiency of Nuclear Factor-κB c-Rel Accelerates the Development of Autoimmune Diabetes in NOD Mice

    Get PDF
    The nuclear factor-κB protein c-Rel plays a critical role in controlling autoimmunity. c-Rel–deficient mice are resistant to streptozotocin-induced diabetes, a drug-induced model of autoimmune diabetes. We generated c-Rel–deficient NOD mice to examine the role of c-Rel in the development of spontaneous autoimmune diabetes. We found that both CD4^+ and CD8^+ T cells from c-Rel–deficient NOD mice showed significantly decreased T-cell receptor–induced IL-2, IFN-γ, and GM-CSF expression. Despite compromised T-cell function, c-Rel deficiency dramatically accelerated insulitis and hyperglycemia in NOD mice along with a substantial reduction in T-regulatory (Treg) cell numbers. Supplementation of isogenic c-Rel–competent Treg cells from prediabetic NOD mice reversed the accelerated diabetes development in c-Rel–deficient NOD mice. The results suggest that c-Rel–dependent Treg cell function is critical in suppressing early-onset autoimmune diabetogenesis in NOD mice. This study provides a novel natural system to study autoimmune diabetes pathogenesis and reveals a previously unknown c-Rel–dependent mechanistic difference between chemically induced and spontaneous diabetogenesis. The study also reveals a unique protective role of c-Rel in autoimmune diabetes, which is distinct from other T-cell–dependent autoimmune diseases such as arthritis and experimental autoimmune encephalomyelitis, where c-Rel promotes autoimmunity

    Bud13 Promotes a Type I Interferon Response By Countering Intron Retention in Irf7

    Get PDF
    Intron retention (IR) has emerged as an important mechanism of gene expression control, but the factors controlling IR events remain poorly understood. We observed consistent IR in one intron of the Irf7 gene and identified BUD13 as an RNA-binding protein that acts at this intron to increase the amount of successful splicing. Deficiency in BUD13 was associated with increased IR, decreased mature Irf7 transcript and protein levels, and consequently a dampened type I interferon response, which compromised the ability of BUD13-deficient macrophages to withstand vesicular stomatitis virus (VSV) infection. Global analysis of BUD13 knockdown and BUD13 cross-linking to RNA revealed a subset of introns that share many characteristics with the one found in Irf7 and are spliced in a BUD13-dependent manner. Deficiency of BUD13 led to decreased mature transcript from genes containing such introns. Thus, by acting as an antagonist to IR, BUD13 facilitates the expression of genes at which IR occurs

    The microRNA-212/132 cluster regulates B cell development by targeting Sox4

    Get PDF
    MicroRNAs have emerged as key regulators of B cell fate decisions and immune function. Deregulation of several microRNAs in B cells leads to the development of autoimmune disease and cancer in mice. We demonstrate that the microRNA-212/132 cluster (miR-212/132) is induced in B cells in response to B cell receptor signaling. Enforced expression of miR-132 results in a block in early B cell development at the prepro–B cell to pro–B cell transition and induces apoptosis in primary bone marrow B cells. Importantly, loss of miR-212/132 results in accelerated B cell recovery after antibody-mediated B cell depletion. We find that Sox4 is a target of miR-132 in B cells. Co-expression of SOX4 with miR-132 rescues the defect in B cell development from overexpression of miR-132 alone, thus suggesting that miR-132 may regulate B lymphopoiesis through Sox4. In addition, we show that the expression of miR-132 can inhibit cancer development in cells that are prone to B cell cancers, such as B cells expressing the c-Myc oncogene. We have thus uncovered miR-132 as a novel contributor to B cell development

    Photon-induced near-field electron microscopy (PINEM) of eukaryotic cells

    Get PDF
    Photon-induced near-field electron microscopy (PINEM) is a technique to produce and then image evanescent electromagnetic fields on the surfaces of nanostructures. Most previous applications of PINEM have imaged surface plasmon-polariton waves on conducting nanomaterials. Here, the application of PINEM on whole human cancer cells and membrane vesicles isolated from them is reported. We show that photons induce time-, orientation-, and polarization-dependent evanescent fields on the surfaces of A431 cancer cells and isolated membrane vesicles. Furthermore, the addition of a ligand to the major surface receptor on these cells and vesicles (Epidermal Growth Factor Receptor, EGFR) reduces the intensity of these fields in both preparations. In the absence of plasmon waves in biological samples, we propose these evanescent fields reflect the changes of EGFR kinase domain polarization upon ligand binding

    SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses

    SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses
    corecore