134 research outputs found

    Loop Quantum Gravity a la Aharonov-Bohm

    Full text link
    The state space of Loop Quantum Gravity admits a decomposition into orthogonal subspaces associated to diffeomorphism equivalence classes of spin-network graphs. In this paper I investigate the possibility of obtaining this state space from the quantization of a topological field theory with many degrees of freedom. The starting point is a 3-manifold with a network of defect-lines. A locally-flat connection on this manifold can have non-trivial holonomy around non-contractible loops. This is in fact the mathematical origin of the Aharonov-Bohm effect. I quantize this theory using standard field theoretical methods. The functional integral defining the scalar product is shown to reduce to a finite dimensional integral over moduli space. A non-trivial measure given by the Faddeev-Popov determinant is derived. I argue that the scalar product obtained coincides with the one used in Loop Quantum Gravity. I provide an explicit derivation in the case of a single defect-line, corresponding to a single loop in Loop Quantum Gravity. Moreover, I discuss the relation with spin-networks as used in the context of spin foam models.Comment: 19 pages, 1 figure; v2: corrected typos, section 4 expanded

    True heterotopic bone in the paralyzed patient

    Full text link
    In past years the clinical and radiologic presentation of true heterotopic bone in the paralyzed patient has been confused with osteomyelitis, neoplasm, trauma, and thrombophlebitis. We reviewed 376 paralyzed patients' roentgenographic files and found 78 patients with soft tissue ossification unassociated with infection, neoplasm, or underlying fractures, which we called true heterotopic bone. From this population the usual spectrum of radiologic findings is described, so that the radiologist may separate roentgenographically a group of patients from other types of ectopic ossification.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46816/1/256_2004_Article_BF00347167.pd

    A Synthesis of Tagging Studies Examining the Behaviour and Survival of Anadromous Salmonids in Marine Environments

    Get PDF
    This paper synthesizes tagging studies to highlight the current state of knowledge concerning the behaviour and survival of anadromous salmonids in the marine environment. Scientific literature was reviewed to quantify the number and type of studies that have investigated behaviour and survival of anadromous forms of Pacific salmon (Oncorhynchus spp.), Atlantic salmon (Salmo salar), brown trout (Salmo trutta), steelhead (Oncorhynchus mykiss), and cutthroat trout (Oncorhynchus clarkii). We examined three categories of tags including electronic (e.g. acoustic, radio, archival), passive (e.g. external marks, Carlin, coded wire, passive integrated transponder [PIT]), and biological (e.g. otolith, genetic, scale, parasites). Based on 207 papers, survival rates and behaviour in marine environments were found to be extremely variable spatially and temporally, with some of the most influential factors being temperature, population, physiological state, and fish size. Salmonids at all life stages were consistently found to swim at an average speed of approximately one body length per second, which likely corresponds with the speed at which transport costs are minimal. We found that there is relatively little research conducted on open-ocean migrating salmonids, and some species (e.g. masu [O. masou] and amago [O. rhodurus]) are underrepresented in the literature. The most common forms of tagging used across life stages were various forms of external tags, coded wire tags, and acoustic tags, however, the majority of studies did not measure tagging/handling effects on the fish, tag loss/failure, or tag detection probabilities when estimating survival. Through the interdisciplinary application of existing and novel technologies, future research examining the behaviour and survival of anadromous salmonids could incorporate important drivers such as oceanography, tagging/handling effects, predation, and physiology

    Scintillation light detection in the 6-m drift-length ProtoDUNE Dual Phase liquid argon TPC

    Get PDF
    DUNE is a dual-site experiment for long-baseline neutrino oscillation studies, neutrino astrophysics and nucleon decay searches. ProtoDUNE Dual Phase (DP) is a 6  ×  6  ×  6 m 3 liquid argon time-projection-chamber (LArTPC) that recorded cosmic-muon data at the CERN Neutrino Platform in 2019-2020 as a prototype of the DUNE Far Detector. Charged particles propagating through the LArTPC produce ionization and scintillation light. The scintillation light signal in these detectors can provide the trigger for non-beam events. In addition, it adds precise timing capabilities and improves the calorimetry measurements. In ProtoDUNE-DP, scintillation and electroluminescence light produced by cosmic muons in the LArTPC is collected by photomultiplier tubes placed up to 7 m away from the ionizing track. In this paper, the ProtoDUNE-DP photon detection system performance is evaluated with a particular focus on the different wavelength shifters, such as PEN and TPB, and the use of Xe-doped LAr, considering its future use in giant LArTPCs. The scintillation light production and propagation processes are analyzed and a comparison of simulation to data is performed, improving understanding of the liquid argon properties

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    How robust are community-based plant bioindicators? Empirical testing of the relationship between Ellenberg values and direct environmental measures in woodland communities

    Get PDF
    There are several community-based bioindicator systems that use species presence or abundance data as proxies for environmental variables. One example is the Ellenberg system, whereby vegetation data are used to estimate environmental soil conditions. Despite widespread use of Ellenberg values in ecological research, the correlation between bioindicated values and actual values is often an implicit assumption rather than based on empirical evidence. Here, we correlate unadjusted and UK-adjusted Ellenberg values for soil moisture, pH, and nitrate in relation to direct environmental measures for 50 woodland sites in the UK, which were subject to repeat sampling. Our results show the accuracy of Ellenberg values is parameter specific; pH values were a good proxy for direct environmental measures but this was not true for soil moisture, when relationships were weak and non-significant. For nitrates, there were important seasonal differences, with a strong positive logarithmic relationship in the spring but a non-significant (and negative) correlation in summer. The UK-adjusted values were better than, or equivalent to, Ellenberg’s original ones, which had been quantified originally for Central Europe, in all cases. Somewhat surprisingly, unweighted values correlated with direct environmental measures better than did abundance-weighted ones. This suggests that the presence of rare plants can be highly important in accurate quantification of soil parameters and we recommend using an unweighted approach. However, site profiles created only using rare plants were inferior to profiles based on the whole plant community and thus cannot be used in isolation. We conclude that, for pH and nitrates, the Ellenberg system provides a useful estimate of actual conditions, but recalibration of moisture values should be considered along with the effect of seasonality on the efficacy of the system
    • 

    corecore