620 research outputs found
In situ studies of algal biomass in relation to physicochemical characteristics of the Salt Plains National Wildlife Refuge, Oklahoma, USA
This is the first in a series of experiments designed to characterize the Salt Plains National Wildlife Refuge (SPNWR) ecosystem in northwestern Oklahoma and to catalogue its microbial inhabitants. The SPNWR is the remnant of an ancient ocean, encompassing ~65 km(2 )of variably hypersaline flat land, fed by tributaries of the Arkansas River. Relative algal biomass (i.e., chlorophyll concentrations attributed to Chlorophyll-a-containing oxygenic phototrophs) and physical and chemical parameters were monitored at three permanent stations for a one-year period (July 2000 to July 2001) using a nested block design. Salient features of the flats include annual air temperatures that ranged from -10 to 40°C, and similar to other arid/semi-arid environments, 15–20-degree daily swings were common. Shade is absent from the flats system; intense irradiance and high temperatures (air and sediment surface) resulted in low water availability across the SPNWR, with levels of only ca. 15 % at the sediment surface. Moreover, moderate daily winds were constant (ca. 8–12 km h(-1)), sometimes achieving maximum speeds of up to 137 km h(-1). Typical of freshwater systems, orthophosphate (PO(4)(3-)) concentrations were low, ranging from 0.04 to <1 μM; dissolved inorganic nitrogen levels were high, but spatially variable, ranging from ca. 250–600 μM (NO(3)(- )+ NO(2)(-)) and 4–166 μM (NH(4)(+)). Phototroph abundance was likely tied to nutrient availability, with high-nutrient sites exhibiting high Chl-a levels (ca. 1.46 mg m(-2)). Despite these harsh conditions, the phototrophic microbial community was unexpectedly diverse. Preliminary attempts to isolate and identify oxygenic phototrophs from SPNWR water and soil samples yielded 47 species from 20 taxa and 3 divisions. Our data indicate that highly variable, extreme environments might support phototrophic microbial communities characterized by higher species diversity than previously assumed
Uncertainty, Scarcity and Transparency: Public Health Ethics and Risk Communication in a Pandemic
Communicating public health guidance is key to mitigating risk during disasters and outbreaks, and ethical guidance on communication emphasizes being fully transparent. Yet, communication during the pandemic has sometimes been fraught, due in part to practical and conceptual challenges around being transparent. A particular challenge has arisen when there was both evolving scientific knowledge on COVID-19 and reticence to acknowledge that resource scarcity concerns were influencing public health recommendations. This essay uses the example of communicating public health guidance on masking in the United States to illustrate ethical challenges of developing and conveying public health guidance under twin conditions of uncertainty and resource scarcity. Such situations require balancing two key principles in public health ethics: the precautionary principle and harm reduction. Transparency remains a bedrock value to guide risk communication, but optimizing transparency requires consideration of additional ethical values in developing and implementing risk communication strategies
USP6 oncogene promotes Wnt signaling by deubiquitylating Frizzleds
Ubiquitin-specific protease 6 (USP6) is a deubiquitylase that is overexpressed by chromosome translocation in two human neoplasms, aneurysmal bone cyst and nodular fasciitis. The relevant substrates of this ubiquitin-specific protease are not clear. Here, we identify the Wnt receptor Frizzled (Fzd) as a key target of the USP6 oncogene. Increased expression of USP6 increases the membrane abundance of Fzd, and hence increases cellular sensitivity to Wnts. USP6 opposes the activity of the ubiquitin ligase and tumor suppressor ring finger protein 43 (RNF43). This study identifies a new mechanism for pathological Wnt pathway activation in human disease and suggests a new approach to regulate Wnt activity therapeutically
Impact of Lack of Breast Feeding during Neonatal Age on the Development of Clinical Signs of Pneumonia and Hypoxemia in Young Infants with Diarrhea
Hypoxemia is a grave sequel of pneumonia, and an important predictor of a fatal outcome. Pneumonia in the neonatal period is often associated with lack of breast feeding. However, there is no published report on the impact of the cessation of breast feeding in the neonatal period on the development of pneumonia and hypoxemia. The purpose of our study was to assess the impact of non-breast feeding or stopping breast feeding during the neonatal period (henceforth to be referred to as non-breast fed) on clinical features of pneumonia and hypoxemia in 0-6-month-old infants with diarrhea admitted to an urban hospital in Bangladesh.We prospectively enrolled all infants (n = 107) aged 0 to 6 months who were admitted to the Special Care Ward (SCW) of the Dhaka Hospital of the International Centre for Diarrhoeal Disease Research Bangladesh (ICDDR,B) with diarrhea and pneumonia from September 2007 through December 2007.We compared the clinical features of pneumonia and hypoxemia of breast fed infants (n = 34) with those who were non-breast fed (n = 73).The median (inter-quartile range) duration of hypoxemia (hours) in non-breast-feds was longer than breast-fed infants [0.0 (0.0, 12.0) vs. 12.0 (0.0, 21.75); p = 0.021]. After adjusting for potential confounders such as inability to drink, fever, head nodding, cyanosis, grunting respiration, and lower chest wall in drawing, the non-breast-fed infants with pneumonia along with diarrhea had a higher probability of cough (OR 9.09; CI 1.34-61.71; p = 0.024), hypoxemia (OR 3.32; CI 1.23-8.93; p = 0.017), and severe undernutrition (OR 3.42; CI 1.29-9.12; p = 0.014).Non-breast feeding or cessation of breast feeding during the neonatal period may substantially increase the incidence of severe malnutrition, incidence of cough, and both the incidence and duration of hypoxemia in young infants presenting with pneumonia and diarrhea. The findings emphasize the paramount importance of the continuation of breast feeding in the neonatal period and early infancy
Multiple Wnt/ß-Catenin Responsive Enhancers Align with the MYC Promoter through Long-Range Chromatin Loops
Inappropriate activation of c-Myc (MYC) gene expression by the Wnt/ß-catenin signaling pathway is required for colorectal carcinogenesis. The elevated MYC levels in colon cancer cells are attributed in part to ß-catenin/TCF4 transcription complexes that are assembled at proximal Wnt/ß-catenin responsive enhancers (WREs). Recent studies suggest that additional WREs that control MYC expression reside far upstream of the MYC transcription start site. Here, I report the characterization of five novel WREs that localize to a region over 400 kb upstream from MYC. These WREs harbor nucleosomes with post-translational histone modifications that demarcate enhancer and gene promoter regions. Using quantitative chromatin conformation capture, I show that the distal WREs are aligned with the MYC promoter through large chromatin loops. The chromatin loops are not restricted to colon cancer cells, but are also found in kidney epithelial and lung fibroblast cell lines that lack de-regulated Wnt signaling and nuclear ß-catenin/TCF4 complexes. While each chromatin loop is detected in quiescent cells, the positioning of three of the five distal enhancers with the MYC promoter is induced by serum mitogens. These findings suggest that the architecture of the MYC promoter is comprised of distal elements that are juxtaposed through large chromatin loops and that ß-catenin/TCF4 complexes utilize this conformation to activate MYC expression in colon cancer cells
Atorvastatin Improves Survival in Septic Rats: Effect on Tissue Inflammatory Pathway and on Insulin Signaling
The aim of the present study was to investigate whether the survival-improving effect of atorvastatin in sepsis is accompanied by a reduction in tissue activation of inflammatory pathways and, in parallel, an improvement in tissue insulin signaling in rats. Diffuse sepsis was induced by cecal ligation and puncture surgery (CLP) in male Wistar rats. Serum glucose and inflammatory cytokines levels were assessed 24 h after CLP. The effect of atorvastatin on survival of septic animals was investigated in parallel with insulin signaling and its modulators in liver, muscle and adipose tissue. Atorvastatin improves survival in septic rats and this improvement is accompanied by a marked improvement in insulin sensitivity, characterized by an increase in glucose disappearance rate during the insulin tolerance test. Sepsis induced an increase in the expression/activation of TLR4 and its downstream signaling JNK and IKK/NF-κB activation, and blunted insulin-induced insulin signaling in liver, muscle and adipose tissue; atorvastatin reversed all these alterations in parallel with a decrease in circulating levels of TNF-α and IL-6. In summary, this study demonstrates that atorvastatin treatment increased survival, with a significant effect upon insulin sensitivity, improving insulin signaling in peripheral tissues of rats during peritoneal-induced sepsis. The effect of atorvastatin on the suppression of the TLR-dependent inflammatory pathway may play a central role in regulation of insulin signaling and survival in sepsis insult
Patient and caregiver priorities for medication adherence in gout, osteoporosis and rheumatoid arthritis: nominal group technique
Objectives: This study aimed to identify and prioritize factors important to patients and caregivers with regard to medication adherence in gout, osteoporosis (OP) and rheumatoid arthritis (RA), and to describe the reasons for their decisions.
Methods: Patients with gout, OP and RA, and their caregivers purposively sampled from five rheumatology clinics in Australia, identified and ranked factors considered important for medication adherence using nominal group technique and discussed their decisions. An importance score (scale 0-1) was calculated, and qualitative data were analysed thematically.
Results: From 14 focus groups, 82 participants (67 patients, 15 caregivers) identified 49 factors. The top five factors based on the ranking of all participants were trust in doctor (importance score 0.46), medication effectiveness (0.31), doctor's knowledge (0.25), side effects (0.23), medication taking routine (0.13). The order of the ranking varied by participant groupings with patients ranking trust in doctor the highest whilst caregivers ranked side effects the highest. Five themes reflecting the reasons for factors influencing adherence were: motivation and certainty in supportive individualised care; living well and restoring function; fear of toxicity and cumulative harm; seeking control and involvement; and unnecessarily difficult and inaccessible.
Conclusions: Factors related to the doctor, medication properties and patients' medication knowledge and routine were important for adherence. Strengthening doctor-patient trust and partnership, managing side effects, and empowering patients with knowledge and skills for medicine-taking could enhance medication adherence in patients with rheumatic conditions
Sex-Dependent Shared and Non-Shared Genetic Architecture Across Mood and Psychotic Disorders
BACKGROUND: Sex differences in incidence and/or presentation of schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BIP) are pervasive. Previous evidence for shared genetic risk and sex differences in brain abnormalities across disorders suggest possible shared sex-dependent genetic risk. /
METHODS: We conducted the largest to date genome-wide genotype–by–sex (GxS) interaction of risk for these disorders, using 85,735 cases (33,403 SCZ, 19,924 BIP, 32,408 MDD) and 109,946 controls from the Psychiatric Genomics Consortium (PGC) and iPSYCH. /
RESULTS: Across disorders, genome-wide significant SNP-by-sex interaction was detected for a locus encompassing NKAIN2 (rs117780815; p=3.2×10−8), that interacts with sodium/potassium-transporting ATPase enzymes implicating neuronal excitability. Three additional loci showed evidence (p<1×10−6) for cross-disorder GxS interaction (rs7302529, p=1.6×10−7; rs73033497, p=8.8×10−7; rs7914279, p=6.4×10−7) implicating various functions. Gene-based analyses identified GxS interaction across disorders (p=8.97×10−7) with transcriptional inhibitor SLTM. Most significant in SCZ was a MOCOS gene locus (rs11665282; p=1.5×10−7), implicating vascular endothelial cells. Secondary analysis of the PGC-SCZ dataset detected an interaction (rs13265509; p=1.1×10−7) in a locus containing IDO2, a kynurenine pathway enzyme with immunoregulatory functions implicated in SCZ, BIP, and MDD. Pathway enrichment analysis detected significant GxS of genes regulating vascular endothelial growth factor (VEGF) receptor signaling in MDD (pFDR<0.05). /
CONCLUSIONS: In the largest genome-wide GxS analysis of mood and psychotic disorders to date, there was substantial genetic overlap between the sexes. However, significant sex-dependent effects were enriched for genes related to neuronal development, immune and vascular functions across and within SCZ, BIP, and MDD at the variant, gene, and pathway enrichment levels
Integrins as therapeutic targets: lessons and opportunities.
The integrins are a large family of cell adhesion molecules that are essential for the regulation of cell growth and function. The identification of key roles for integrins in a diverse range of diseases, including cancer, infection, thrombosis and autoimmune disorders, has revealed their substantial potential as therapeutic targets. However, so far, pharmacological inhibitors for only three integrins have received marketing approval. This article discusses the structure and function of integrins, their roles in disease and the chequered history of the approved integrin antagonists. Recent advances in the understanding of integrin function, ligand interaction and signalling pathways suggest novel strategies for inhibiting integrin function that could help harness their full potential as therapeutic targets
The Science Performance of JWST as Characterized in Commissioning
This paper characterizes the actual science performance of the James Webb Space Telescope (JWST), as determined from the six month commissioning period. We summarize the performance of the spacecraft, telescope, science instruments, and ground system, with an emphasis on differences from pre-launch expectations. Commissioning has made clear that JWST is fully capable of achieving the discoveries for which it was built. Moreover, almost across the board, the science performance of JWST is better than expected; in most cases, JWST will go deeper faster than expected. The telescope and instrument suite have demonstrated the sensitivity, stability, image quality, and spectral range that are necessary to transform our understanding of the cosmos through observations spanning from near-earth asteroids to the most distant galaxies
- …