55 research outputs found

    A New Design of Ultra-Flattened Near-zero Dispersion PCF Using Selectively Liquid Infiltration

    Full text link
    The paper report new results of chromatic dispersion in Photonic Crystal Fibers (PCFs) through appropriate designing of index-guiding triangular-lattice structure devised, with a selective infiltration of only the first air-hole ring with index-matching liquid. Our proposed structure can be implemented for both ultra-low and ultra-flattened dispersion over a wide wavelength range. The dependence of dispersion parameter of the PCF on infiltrating liquid indices, hole-to-hole distance and air-hole diameter are investigated in details. The result establishes the design to yield a dispersion of 0+-0.15ps/ (nm.km) in the communication wavelength band. We propose designs pertaining to infiltrating practical liquid for near-zero ultra-flat dispersion of D=0+-0.48ps/ (nm.km) achievable over a bandwidth of 276-492nm in the wavelength range of 1.26 {\mu}m to 1.80{\mu}m realization.Comment: 6 pages, 13 figures, 1 tabl

    Quarc: a high-efficiency network on-chip architecture

    Get PDF
    The novel Quarc NoC architecture, inspired by the Spidergon scheme is introduced as a NoC architecture that is highly efficient in performing collective communication operations including broadcast and multicast. The efficiency of the Quarc architecture is achieved through balancing the traffic which is the result of the modifications applied to the topology and the routing elements of the Spidergon NoC. This paper provides an ASIC implementation of both architectures using UMCpsilas 0.13 mum CMOS technology and demonstrates an analysis and comparison of the cost and performance between the Quarc and the Spidergon NoCs

    Near-elliptic core triangular-lattice and square-lattice PCFs: a comparison of birefringence, cut-off and GVD characteristics towards fiber device application

    Full text link
    In this work, detailed numerical analysis of the near-elliptic core index-guiding triangular-lattice and square-lattice photonic crystal fiber (PCFs) are reported for birefringence, single mode, cut-off behavior, group velocity dispersion and effective area properties. For the same relative values of d/P, triangular-lattice PCFs show higher birefringence whereas the square-lattice PCFs show a wider range of single-mode operation. Square-lattice PCF was found to be endlessly single-mode for higher air-filling fraction (d/P). Smaller lengths of triangular-lattice PCF are required for dispersion compensation whereas PCFs with square-lattice with nearer relative dispersion slope (RDS) can better compensate the broadband dispersion. Square-lattice PCFs show ZDW red-shifted, making it preferable for mid-IR supercontinuum generation (SCG) with highly non-linear chalcogenide material. Square-lattice PCFs show higher dispersion slope that leads to compression of the broadband, thus accumulating more power in the pulse. On the other hand, triangular-lattice PCF with flat dispersion profile can generate broader SCG. Square-lattice PCF with low Group Velocity Dispersion (GVD) at the anomalous dispersion corresponds to higher dispersion length and higher degree of solitonic interaction. The effective area of square-lattice PCF is always greater than its triangular-lattice counterpart making it better suited for high power applications. Smaller length of symmetric-core PCF for dispersion compensation, while broadband dispersion compensation can be better performed with asymmetric-core PCF. Mid-Infrared SCG can be better performed with asymmetric-core PCF with compressed and high power pulse, while wider range of SCG can be performed with symmetric core PCF. Thus, this study will be extremely useful for realizing fiber towards a custom application around these characteristics.Comment: 10 pages, 17 figure

    On the Reduction of Computational Complexity of Deep Convolutional Neural Networks.

    Get PDF
    Deep convolutional neural networks (ConvNets), which are at the heart of many new emerging applications, achieve remarkable performance in audio and visual recognition tasks. Unfortunately, achieving accuracy often implies significant computational costs, limiting deployability. In modern ConvNets it is typical for the convolution layers to consume the vast majority of computational resources during inference. This has made the acceleration of these layers an important research area in academia and industry. In this paper, we examine the effects of co-optimizing the internal structures of the convolutional layers and underlying implementation of fundamental convolution operation. We demonstrate that a combination of these methods can have a big impact on the overall speedup of a ConvNet, achieving a ten-fold increase over baseline. We also introduce a new class of fast one-dimensional (1D) convolutions for ConvNets using the Toom-Cook algorithm. We show that our proposed scheme is mathematically well-grounded, robust, and does not require any time-consuming retraining, while still achieving speedups solely from convolutional layers with no loss in baseline accuracy

    On the effects of quantisation on model uncertainty in Bayesian neural networks

    Get PDF
    Bayesian neural networks (BNNs) are making significant progress in many research areas where decision-making needs to be accompanied by uncertainty estimation. Being able to quantify uncertainty while making decisions is essential for understanding when the model is over-/under-confident, and hence BNNs are attracting interest in safety-critical applications, such as autonomous driving, healthcare, and robotics. Nevertheless, BNNs have not been as widely used in industrial practice, mainly because of their increased memory and compute costs. In this work, we investigate quantisation of BNNs by compressing 32-bit floating-point weights and activations to their integer counterparts, that has already been successful in reducing the compute demand in standard pointwise neural networks. We study three types of quantised BNNs, we evaluate them under a wide range of different settings, and we empirically demonstrate that a uniform quantisation scheme applied to BNNs does not substantially decrease their quality of uncertainty estimation
    corecore