
entropy

Article

On the Reduction of Computational Complexity of
Deep Convolutional Neural Networks †

Partha Maji * ID and Robert Mullins ID

Department of Computer Science and Technology, University of Cambridge, William Gates Building,
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK; robert.mullins@cl.cam.ac.uk
* Correspondence: partha.maji@cl.cam.ac.uk
† This paper is an extended version of our paper published in proceedings of the Artificial Neural Networks

and Machine Learning (ICANN-2017).

Received: 22 January 2018; Accepted: 17 April 2018; Published: 24 April 2018
����������
�������

Abstract: Deep convolutional neural networks (ConvNets), which are at the heart of many new emerging
applications, achieve remarkable performance in audio and visual recognition tasks. Unfortunately,
achieving accuracy often implies significant computational costs, limiting deployability. In modern
ConvNets it is typical for the convolution layers to consume the vast majority of computational
resources during inference. This has made the acceleration of these layers an important research
area in academia and industry. In this paper, we examine the effects of co-optimizing the internal
structures of the convolutional layers and underlying implementation of fundamental convolution
operation. We demonstrate that a combination of these methods can have a big impact on the
overall speedup of a ConvNet, achieving a ten-fold increase over baseline. We also introduce a
new class of fast one-dimensional (1D) convolutions for ConvNets using the Toom–Cook algorithm.
We show that our proposed scheme is mathematically well-grounded, robust, and does not require any
time-consuming retraining, while still achieving speedups solely from convolutional layers with no loss
in baseline accuracy.

Keywords: convolutional neural network; deep learning; computational optimization; hardware
implementation

1. Introduction

Convolutional neural networks (ConvNets) are becoming a mainstream technology for an array
of new embedded applications, including speech recognition, language translation, object detection,
image recognition, and numerous other complex tasks ([1–5]). This breakthrough has been made
possible by recent progress in deep learning, although the theoretical understanding remains, however,
unsatisfactory. Basic questions about optimal architecture, the number of required layers, and the
number of neurons per layer are not well understood. Most state-of-the-art deep models typically
require millions of parameters and billions of operations to produce human-level accuracy ([6–8]).
The memory and computational requirements in particular complicate the deployment of deep neural
networks on low power-embedded platforms as they have a very limited computational and power
budget. To avoid running end-to-end inference on embedded systems, the current state-of-the-art
solutions enable this type of application by off-loading the computation to cloud-based infrastructures
where server-grade machines (GPUs and other application-specific accelerators) perform the heavy
number crunching. Unfortunately, the cloud-assisted approach places severe limitations on the
usability and scalability of deep learning-based embedded and Internet of Things (IoT) applications.
First and foremost, the user data is sent across the cloud, with serious privacy implications. Second,
sending lots of data (e.g., every frame of a video) over a wireless network consumes significant power

Entropy 2018, 20, 305; doi:10.3390/e20040305 www.mdpi.com/journal/entropy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/162913205?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0002-1919-1228
https://orcid.org/0000-0002-8393-2748
http://www.mdpi.com/1099-4300/20/4/305?type=check_update&version=1
http://www.mdpi.com/journal/entropy
http://dx.doi.org/10.3390/e20040305

Entropy 2018, 20, 305 2 of 20

due to the communication overhead. For applications where continuous data exchange is required
between the server and the mobile device, latency is also a big concern. For example, a wearable
continuous glucose level monitoring sensor must detect an abnormal condition and must perform an
action in real time. The third limitation is the scalability, which has mid to long-term implications.
Gartner Inc., one of the world’s leading research and advisory companies, estimates that by 2020,
26 billion IoT units will be installed globally [9]. The staggering amount of data generated by IoT
devices will easily exceed the storage limits of cloud infrastructure. To truly scale deep learning-based
applications globally in various scenarios, we have to enable these applications without the requirement
of always having to connect to the cloud infrastructure.

In this paper, we propose a robust and easy-to-implement acceleration scheme, known as
One-Dimensional Fast Approximate Low-rank CONvolution (1D-FALCON), which can be applied
on readily available state-of-the-art pre-trained models. Very recently, Tishby et al. showed that deep
neural networks can be explained from an information-theoretic approach [10]. The author showed
us that the goal of deep learning can be expressed as an information-theoretic trade-off between
compression and prediction accuracy. Our proposed scheme exploits the inherent redundancy present
in the convolution layers in order to reduce the compute complexity of deep networks. Additionally,
we decompose each filter bank into multiple one-dimensional (1D) low-rank vectors to reduce the
total number of operations required per layer. We then apply a modified version of the Toom–Cook
algorithm to compute the convolution using one-dimensional filters to further reduce the number of
multiplications in discrete convolution. Figure 1 presents the high-level optimization pipeline from
our 1D-FALCON scheme.

Although many earlier studies have focused on reducing overall memory footprint by
compression, only a few have aimed at speeding up convolutional layers. Unlike many previously
proposed pruning and regularization techniques, our scheme does not involve any time-consuming
iterative retraining cycle. Furthermore, since rank selection and decomposition are only dependent
on the individual layer’s inherent property, each convolution layer can be approximated in parallel.
Our approximation scheme is mathematically well-grounded, robust, and thus easily tunable using
numerical formulation, without sacrificing baseline accuracy. To the best of our knowledge, this paper
is the first to study a co-optimization scheme that combines both the one-shot low-rank model
approximation technique and a fast arithmetic scheme that exploits convolutions by separability.

Figure 1. One-Dimensional Fast Approximate Low-rank CONvolution (1D-FALCON): A high-level
optimization pipeline consisting of two main stages.

Entropy 2018, 20, 305 3 of 20

2. Related Work

Model pruning has been used both to reduce over-fitting and the memory footprint. Optimal
brain damage [11] and optimal brain surgery [12] are early examples of pruning aimed at reducing the
number of connections within a network. Recently, Han et al. proposed a pruning scheme for ConvNets
aimed at reducing the total number of parameters in the entire network [7,13]. However, the authors in
this paper mentioned that it is challenging to achieve a significant runtime speedup of a convolutional
network with conventional direct implementation. In addition, the pruning-based scheme involves a
very long iterative pruning and retraining cycle. For example, it took seven days to retrain the pruned
five (convolution)-layer AlexNet [7], which is not practical for fast time-to-market products.

Liu et al. [14] proposed a sparse convolutional neural network (SCNN) model that exploits both
inter-channel and intra-channel redundancy to maximize sparsity in a model. This method is very
effective for parameter reduction in the fully-connected layers. The retraining stage with a modified
cost function is very time consuming.

Denton et al. showed in recent research that the generalized eigendecomposition-based truncation
can help to reduce parameters from the fully-connected layers [15]. However, the authors did not
consider the computation-intensive convolutional layers. Jaderberg et al. proposed a singular value
decomposition-based technique for layer-by-layer approximation [16]. Their methodology uses iterative
steps where a layer can only be approximated after the previous layer has been compressed. The author
used an updated loss function to learn the low-rank filters, which is again a time-consuming process.
The author also reported that simultaneous approximation of all the layers in parallel is not efficient.
Mamalet et al. designed the model to use low-rank filters from scratch and combine them with the pooling
layer [17]. However, their technique cannot be applied to general network design. Sironi et al. showed
that learning-based strategies can be used to obtain separable (rank-1) filters from multiple filters, allowing
large speedup with minimal loss in accuracy [18]. We build our methodology on this fundamental idea.
Instead of learning separable filters, we use a one-shot approach which can be applied statically.

Gupta et al. [19] studied the effect of limited precision data representation in the context of training
ConvNets. They observed that ConvNets can be trained using only 16-bit wide fixed-point number
representation with little to no degradation in the classification accuracy. A number of optimization
schemes have been proposed recently that recommend use of fewer bits to represent the parameters
and datapaths [13,20,21]. Our scheme is orthogonal to these techniques and can be combined with
quantization to further reduce the computational complexity and storage requirements.

Cong et al. showed that by using Strassen’s algorithm, computation complexity in convolutional
layers can be reduced by up to 47% [6]. Vasilache et al. used an FFT-based scheme to speed up
convolutions, which are not very effective for small filters [22]. Recently, both nVidia’s cuDNN and
Intel’s MKL library added support for Winograd’s algorithm to speed up convolutions, as originally
proposed by Lavin et al. [23]. Although combining sparse methods and Winograd’s convolution
holds the potential to achieve significant speedup, pruning Winograd kernels to induce sparsity poses
challenges [24].

3. Optimization of Deep Convolutional Neural Networks—An Information-Theoretic Approach

A typical deep neural network (or deep convolutional neural network) has a huge parameter
space, and using the stochastic gradient descent (SGD), one can exponentially arrive at many optimal
solutions consisting of different numbers of layers, layer sizes, and numbers of parameters. Although
the optimal size of a network (e.g., number of layers, neurons per layer etc.) for a given dataset is
unknown at the start, we are able to find a number of alternative approximate networks which yields
the same desired accuracy. Tishby et al. recently showed that the organization of deep neural networks
can be analyzed using information theory [25]. In their research, the authors demonstrated that an
information-theoretic approach can help us to better understand both the learning process and internal
representation of deep networks. Typically, in a deep neural network, the input denoted by X is a
high-dimensional variable, being a low-level representation of data such as pixels of an image, whereas

Entropy 2018, 20, 305 4 of 20

the desired output, Y, has a significantly lower dimensionality of the predicted categories. In between
the input and the output layer, the structure of deep network forms a Markov chain of intermediate
representations made out of many hidden layers—h1, h2, .., hm (see Figure 2). In supervised learning
we are interested in good representations of the input patterns that enable good predictions of the
labels. The deep neural network obtains a Markov chain of such representations, the hidden layers, by
minimization of the empirical error over the weights of the network layer by layer. This optimization
takes place via stochastic gradient descent (SGD), using a noisy estimate of the gradient of the empirical
error of each weight through back propagation. This SGD-based optimization process has two distinct
phases: empirical error minimization and representation compression. During the first phase of the
SGD-based training process, the network tries to memorize the data using maximum entropy weight
distribution. In the second phase of the training, it adds noise to the network, which helps to generalize.
How much information flows between the input and the output of a layer defines the trade-off between
complexity and accuracy. Mutual information is a measure of correlation between different variables.
Using the ReLU activation function the information is also compressed at each layer. In our research
we noticed that deep neural networks trained using SGD-based optimization resulted in a lot of
correlated filters in hidden layers. We exploit this redundancy to trade off complexity with accuracy.
The following section covers this trade-off process in more detail.

Figure 2. An example of a deep neural network with an input layer X, output layer Yp, and m hidden
layers in between. During the training phase, the desired output Y is observed and is used to learn the
connectivity matrices between the layers. In the inference phase, the network forms a Markov chain,
which predicts output Yp for any input X.

4. Methodology

The proposed 1D-FALCON scheme consists of two main stages, namely, an approximation stage
followed by a fast arithmetic stage, as shown in Figure 1. To achieve this we first approximate each
convolutional layer to the necessary level to reduce computational complexity and then decompose
each filter bank into two rank-1 filter banks by introducing an intermediate layer in between. If the
classification accuracy drops after the layer restructuring stage we fine-tune the model using the training
dataset. Then, we apply a modified version of the Toom–Cook algorithm, which computes each 1D
convolution for a chosen set of distinct data points, to further reduce the number of strong operations
(in this case multiplications). We will show that the combined application of these two schemes results in
a significant reduction in computational complexity. In the following few sections describe each phase
of our optimization pipeline in detail. We first introduce the idea of a separable filter in the context
of convolution.

Entropy 2018, 20, 305 5 of 20

4.1. Separable Filters

The concept of separable filters by splitting convolution operations into convergent sums of
matrix-valued stages was proposed by Hummel and Lowe in the 1980s before ConvNet became popular
for automatic feature learning [26]. This property was exploited in many early image-processing
filters—e.g., the Sobel edge detection filter, the Gaussian blurring filter, etc. This approach is very
powerful but restricted to filters that are decomposable, which is often not the case for a trained filter
such as in ConvNet. However, due to the presence of inherent redundancy between different filters or
feature maps within a layer, this property can be exploited in the acceleration of ConvNet models.

Consider an arbitrary kernel of a ConvNet described by the (m× n) matrixW .

W =

α00 α01 .. α0n
α10 α11 .. α1n
..

αm0 αm1 .. αmn

 (1)

We say that kernel W is separable when it can be split into the outer product of an m-length
column vector v and an n-length row vector h as follows:

W = VHT =

v0

v1

..
vm

 [
h0 h1 .. hn

]
(2)

or,W can be explicitly expressed as:

W = VHT =

v0h0 v0h1 .. v0hn

v1h0 v1h1 .. v1hn

..
vmh0 vmh1 .. vmhn

 (3)

From Equations (1) and (3), it is apparent that a separable kernel has equivalent rows and columns.
To store the original kernelW in Equation (1), it would require (mn) space. However, if the kernelW
is a separable matrix, then we see from Equation (3) that it would require (m + n) space. As m and n
becomes large and original kernel is separableW , one can see that substantial savings in computational
time and storage will be achieved.

Unfortunately, we cannot generally expect that any trained kernel in ConvNet satisfies such
stringent conditions. The collection of kernels in a ConvNet is generally of full rank and expensive to
convolve with large images. However, we can aim forW to be approximately separable such that

W = VHT + E (4)

where E is an error kernel, whose importance we would like to be as small as possible in relation to
the original kernelW . We can further generalize Equation (4) in the following form:

W = V1HT
1 + V2HT

2 + ... + ViHT
i + ... + VrHT

r + Er

= U1 + U2 + ... + Ui + ... + Ur + Er
(5)

where each term,
Ui = ViHT

i (6)

is an exactly separable rank-1 outer product of a column vector of length m and row vector of length
n, and Er is the error matrix associated with r-term approximation of original kernelW as shown in

Entropy 2018, 20, 305 6 of 20

Figure 3. Eckart and Young showed that the SVD is the solution to the problem of minimizing Er [27].
Furthermore, if the original kernelW can be well approximated by r rank-1 updates, we will only
require r(m + n) parameters to describe the kernel instead of original mn elements. The key idea here
is that if we choose r such that r(m + n) << mn, then it would require less storage and computation.
We can extend this idea to the convolutional neural network to reduce the overall cost of computation.

V1 V2 Vr

H1 H2 Hr

m

n

Figure 3. A two-dimensional (2D) matrix can be represented by the sum of r rank-1 updates.

4.2. Layerwise Approximation and Convolution by Separability

In ConvNets, multiple layers of convolutional filter (also known as kernel) banks are stacked on
top of each other, followed by a non-linear activation function. Significant redundancy exists between
those spatial filter dimensions and also along cross-channel feature maps. Most of the previous research
has focused on either exploiting approximation along spatial filter dimensions or along one of the
feature channel dimensions. In our approach, we aim at approximating the redundancy across both
the input and output feature maps.

Let us assume, in a convolutional neural network, that a four-dimensional kernel can be
represented as W ∈ RFI×(m×n)×FO , where spatial two-dimensional kernels are of size (m× n) and
FI , FO are the input and output channels within a layer, respectively. We can also represent an input
feature map as X ∈ RM×N×FI and corresponding kernels as Wi ∈ Rm×n×FI for ith set of weights,
where each input feature map is of size (M× N). The original convolution for the ith set of weights in
a given layer now becomes

Wi ∗ X =
FI

∑
f=1
W f

i ∗ x f (7)

Our goal is to find an approximation of kernelWi, such thatWi = W̃i + E . Using the concept
of separable filters [18], let us assume that for a small error E , the chosen rank is R. How the rank
R is chosen will be explained in the next section. The modified kernel now can be represented by
Equation (8), where V ∈ RR×(m×1×FI) is the approximate column kernel, andH ∈ RFO×(1×n×R) is the
approximate row kernel.

W̃i ∗ X =
FI

∑
f=1

R

∑
r=1
Hr

i (V
f

r)
T ∗ x f =

R

∑
r=1
Hr

i ∗ (
FI

∑
f=1
V f

r ∗ x f) (8)

Figure 4 depicts the idea of re-constructing the convolution layer using the newly constructed
column and row low-rank kernels and compares them with the original two-dimensional (2D) direct
convolution. We compute the column and row kernels (V ,H) statically using generalized eigenvalue
decomposition by minimizing the error E . Since we decide the magnitude of the approximation
statically, we avoid the long running time of learning-based techniques. Additionally, as the
approximation is an inherent property of each layer, we can restructure all the convolutional layers
in a ConvNet in parallel, which also saves time. If the accuracy of a model drops at this stage after
approximating all the layers, we fine-tune the complete model once using the training dataset.

Entropy 2018, 20, 305 7 of 20

 convolution
partial sum

(m x n x FI) (a)

(b)

M

FI

R

FI

n

m

kernels

input channels
output channels

M

FI

input channels

(m x 1 x FI)

FI

1

m

vertical
kernels

output
channels

(1 x n x R)

1

horizontal
kernels

n

R

R FO

intermediate
channels

intermediate
channels

FO

stage-1
convolution

stage-2
convolution

N

N

Figure 4. (a) The original convolution with a (m × n) kernel. (b) The two-stage approximate
convolution using a (m × 1) column kernel in stage 1 followed by a (1 × n) row kernel in stage
2. There are R channels in the intermediate virtual layer.

4.3. Rank Search and Layer Restructuring Algorithm

The rank R is chosen by the one-shot minimization criterion described before. We apply
singular value decomposition on the 2-D tensor R(FI m)×(nFO), which we obtain from the original
four-dimensional (4D) tensor RFI×m×n×FO . Unlike other minimization criteria such as the Mahalanobis
distance metric or the data covariance distance metric [15], our simple criterion gives us an exact
decomposition. Algorithm 1 describes the main steps of our low-rank approximation and ConvNet
layer restructuring scheme.

Algorithm 1: Rank approximation and the layer restructuring algorithm

1 function LayerwiseReduce (M, C, W);
Input : Target ConvNet model: M, Kernel Dimension: pi,

Compression factor of each layer: [c1, c2, .., cn],
Pre-trained weights of individual layer:[w1, w2, .., wn]

Output : Reduced ConvNet Model: M∗,
Reduced weights of each layer: [v1, v2, .., vn], [h1, h2, .., hn]

2 for i← 1 to Layers do
3 if layerType == Conv then
4 targetRank← pi FI FO

ci(FI+FO)
;

5 UΛVT ← SVD(wi);
6 disconnectLayers(wi);
7 vi ← U

√
Λ;

8 hi ← V
√

Λ;
9 addNewLayer(targetRank);

10 M∗ ← reconstructModel(M, vi, hi);
11 end
12 end

Entropy 2018, 20, 305 8 of 20

4.4. The Modified Toom–Cook’s Fast 1D Convolution

Once we have obtained newly constructed multi-stage 1D convolution layers, we apply a
modified version of the Toom–Cook algorithm to further reduce the number of multiplications. In the
Toom–Cook method, a linear convolution can be written as product of two polynomials in the real
field ([28,29]).

s(p) = w(p)x(p), where deg[x(p)] = N − 1 , deg[w(p)] = L− 1 (9)

The output polynomial s(p) has a degree L+ N− 2 and L+ N− 1 different coefficients. Instead of
explicitly multiplying the polynomials w(p) and x(p) using the discrete convolution, the Toom–Cook
algorithm evaluates the polynomials w(p) and x(p) for a set of data points βi and then multiplies
their values s(βi) = w(βi)x(βi). Afterwards, the product polynomials s(p) are constructed using the
Lagrange interpolation (see Figure 5). The algorithm consists of four steps:

1. Choose L + N − 1 distinct data points β0, β1,...,βL+N−2.
2. Evaluate w(βi) and x(βi) for all the data points.
3. Compute s(βi) = w(βi)x(βi).
4. Finally, compute s(p) by Lagrange interpolation as follows :

s(p) =
L+N−2

∑
i=0

s(βi)
∏j 6=i(x− β j)

∏j 6=i(βi − β j)
(10)

Input: w(p), x(p)

Compute w(βk) for k = 0,.., (L+N-2)
Compute x(βk) for k = 0,.., (L+N-2)

Compute s(βk) = w(βk)x(βk),
for k = 0, …, (L+N-2)

Compute s(p) using Lagrange
Interpolation

2

3

4

Output: s(p)

Choose (L+N-1) distinct data points
β0 , β2 , … , βL+N-2

1

Figure 5. Steps in the modified Toom–Cook algorithm.

Entropy 2018, 20, 305 9 of 20

Since (L + N − 1) distinct data points are chosen in step 1, a total of (L + N − 1) multiplications
are required in step 3. The Toom–Cook algorithm can also be viewed as a method of factoring matrices
and can be expressed as the following form (� denotes element-wise multiplication):

s(p) = S[{Ww(p)} � {Xx(p)}] (11)

where W, X and S are the transform matrix for kernels, input, and output, respectively. The cost of
computing {Ww(p)} gets amortized over reuse of the result for many input slices. The matrices X
and S consist of small integers (0,±1,±2, ...), making it possible to realize them by a number of pre-
and post-additions. In addition, in ConvNets multiple channels from the same layer can be computed
at the same time. For example, a typical convolution layer with C channels will result in the following
C output transforms S:

sC(p) =
C

∑
c=1

S[{Ww(p)}c � {Xx(p)}c] (12)

We can rewrite the equation as follows and only apply the output transform once S on the final
sum. This amortizes the cost of the output transform over the number of channels in a layer.

sC(p) = S
C

∑
c=1

[{Ww(p)}c � {Xx(p)}c] (13)

Finally, the only dominant costs left over here are (L + N − 1) elementwise multiplications from
step 3.

4.5. A Fast Convolution Algorithm for Filtering of Dimension Three Using the Modified Toom–Cook Scheme

In our 1D-FALCON scheme, we have chosen an input block size of (6× 1) to be convolved
with (3× 1) 1D filters. This results in a (4× 1) block as output and we denote this algorithm as
F(4× 1, 3× 1, {6× 1}). Alternatively, one can also start with a (4× 1) input block and swap output
and input transforms to obtain the same result as shown in Equation (34). Using this alternative
approach we will now compute the necessary transformation matrices, namely, W, X, and S.

w(p) = w0 + w1 p + w2 p2 (14)

x(p) = x0 + x1 p + x2 p2 + x3 p3 (15)

s(p) = w(p)x(p) = s0 + s1 p + s2 p2 + s3 p3 + s4 p4 + s5 p5 (16)

since L = 3 and N = 4, L + N − 3 = 4. Therefore we can choose β0 = 0, β1 = 1, β2 = −1, β3 = 2, and
β4 = −2. Now, let us calculate individual w(βk) and x(βk) as follows:

β0 = 0, w(β0) = w0, x(β0) = x0 (17)

β1 = 1, w(β1) = w0 + w1 + w2, x(β1) = x0 + x1 + x2 + x3 (18)

β2 = −1, w(β2) = w0 − w1 + w2, x(β2) = x0 − x1 + x2 − x3 (19)

β3 = 2, w(β3) = w0 + 2w1 + 4w2, x(β3) = x0 + 2x1 + 4x2 + 8x3 (20)

β4 = −2, w(β4) = w0 − 2w1 + 4w2, x(β3) = x0 − 2x1 + 4x2 − 8x3 (21)

According to the modified Toom–Cook algorithm, the polynomial of degree (L + N − 3) now can
be expressed as follows:

s
′
(β0) = w(β0)x(β0)− w2x3β5

0 = w(β0)x(β0) (22)

Entropy 2018, 20, 305 10 of 20

s
′
(β1) = w(β1)x(β1)− w2x3β5

1 = w(β1)x(β1)− w2x3 (23)

s
′
(β2) = w(β2)x(β2)− w2x3β5

2 = w(β2)x(β2) + w2x3 (24)

s
′
(β3) = w(β3)x(β3)− w2x3β5

3 = w(β3)x(β3)− 32w2x3 (25)

s
′
(β4) = w(β4)x(β4)− w2x3β5

4 = w(β4)x(β4) + 32w2x3 (26)

Using Lagrange interpolation

s
′
(p) = s

′
(β0)

(p− β1)(p− β2)(p− β3)(p− β4)

(β0 − β1)(β0 − β2)(β0 − β3)(β0 − β4)

+s
′
(β1)

(p− β0)(p− β2)(p− β3)(p− β4)

(β1 − β0)(β1 − β2)(β1 − β3)(β1 − β4)

+s
′
(β2)

(p− β0)(p− β1)(p− β3)(p− β4)

(β2 − β0)(β2 − β1)(β2 − β3)(β2 − β4)

+s
′
(β3)

(p− β0)(p− β1)(p− β2)(p− β4)

(β3 − β0)(β3 − β1)(β3 − β2)(β3 − β4)

+s
′
(β4)

(p− β0)(p− β1)(p− β2)(p− β3)

(β4 − β0)(β4 − β1)(β4 − β2)(β4 − β3)

(27)

the above equation can be simplified further and can be re-arranged in the polynomial form as follows:

s
′
(p) = s

′
(β0) + p(

4
6

s
′
(β1)−

4
6

s
′
(β2)−

2
24

s
′
(β3) +

2
24

s
′
(β4))

+p2(−5
4

s
′
(β0) +

4
6

s
′
(β1) +

4
6

s
′
(β2)−

1
24

s
′
(β3)−

1
24

s
′
(β4))

+p3(−1
6

s
′
(β1) +

1
6

s
′
(β2) +

2
24

s
′
(β3)−

2
24

s
′
(β4))

+p4(
1
4

s
′
(β0)−

1
6

s
′
(β1)−

1
6

s
′
(β2) +

1
24

s
′
(β3) +

1
24

s
′
(β4))

(28)

Since we have modified Toom–Cook algorithm to reduce number of additions, we can get back
s(p) by using

s(p) = s
′
(p) + w2x3 p5 (29)

Finally, we have the output in matrix form by replacing all βk in the previous equation,

s0

s1

s2

s3

s4

s5

=

4 0 0 0 0 0
0 4 −4 −2 2 4
−5 4 4 −1 −1 0

0 −1 1 2 −2 −5
1 −1 −1 1 1 0
0 0 0 0 0 1

W0

W1

W2

W3

W4

W5

1 0 0 0
1 1 1 1
1 −1 1 −1
1 2 4 8
1 −2 4 −8
0 0 0 1

x0

x1

x2

x3

 (30)

where

W0

W1

W2

W3

W4

W5

=

1
4 0 0
1
6

1
6

1
6

1
6 − 1

6
1
6

1
24

1
12

1
6

1
24 − 1

12
1
6

0 0 1

w0

w1

w2

 (31)

Entropy 2018, 20, 305 11 of 20

The Toom–Cook algorithm can be viewed as a method of factoring matrices and can be expressed
as the following form (� denotes element-wise multiplication):

s = X[(Ww)� (Sx)] (32)

We can transpose this solution for a larger block size using matrix exchange theorem from linear
algebra. According to matrix exchange theorem, if we have a matrix M which can be factored as:

s = XDS (33)

where D is a diagonal matrix, then it can also be factored as:

s = (S̄)T D(X)T (34)

where S̄ is the matrix obtained from S by reversing the order of its columns, and X is the matrix
obtained from X by reversing the order of its rows. We can now apply the same on our final equation
and have an alternative form as follows:

s = ST [(Ww)� (XTx)] (35)

Finally, we obtain the transformation matrices ST, XT, and W from Equations (36)–(38) respectively.

s0

s1

s2

s3

 =

1 1 1 1 1 0
0 1 −1 2 −2 0
0 1 1 4 4 0
0 1 −1 8 −8 1

S0

S1

S2

S3

S4

S5

(36)

where

S0

S1

S2

S3

S4

S5

=

W0

W1

W2

W3

W4

W5

�

4 0 −5 0 1 0
0 −4 −4 1 −1 0
0 4 −4 −1 −1 0
0 −2 −1 2 1 0
0 2 −1 −2 1 0
0 4 0 −5 0 1

x0

x1

x2

x3

x4

x6

(37)

where

W0

W1

W2

W3

W4

W5

=

1
4 0 0
1
6

1
6

1
6

1
6 − 1

6
1
6

1
24

1
12

1
6

1
24 − 1

12
1
6

0 0 1

w0

w1

w2

 (38)

5. Results and Discussion

In order to evaluate the effectiveness of our scheme we compared it against several popular networks
targeting the MNIST, CIFAR-10, ImageNet, and PASCAL VOC datasets. In this paper, we demonstrate
our result for the VGG-16 model, which won the the ImageNet challenge in 2014 [30]. VGG-16 is a deep
architecture and consists of 13 convolutional layers out of a total of16 layers. To make a comparison
with a wide variety of speedup techniques, we chose a direct 2D convolutional scheme [30], a low-rank
scheme based on the Tucker decomposition [31], two popular pruning techniques ([7,32]), a sparsification
scheme [33], and the 2D Winograd filtering scheme [23].

Entropy 2018, 20, 305 12 of 20

We used three main metrics for comparison:

• MULs: Total number of strong operations (i.e., multiplications) in the convolutional layers
• Speedup: Total speedup achieved as compared to baseline 2D convolution
• Fine-Tuning Time: Average fine-tuning time in number of epochs. The fine-tuning is the process

of re-training a CNN after having trained it once and then having reduced its complexity. An epoch
is a complete pass through the training set.

As can be seen from Table 1, our 1D-FALCON scheme achieves significant speedup compared to
other schemes and does not require a long fine-tuning time. The overall speedup comes from combined
application of both the low-rank approximation scheme and the fast 1D convolution technique using
the modified Toom–Cook algorithm. The following section highlights the detail speed up achieved
from the individual stages of our optimization pipeline.

Table 1. A comparison of speedup of VGG-16 using different schemes.

Optimization Scheme #MULs Speedup Top-5 Error (%) Fine-Tuning Time

2D Convolution [30] 15.3G 1.0× 9.4 None
Group-Wise Sparsification [33] 7.6G 2.0× 10.1 >10 epochs
Iterative Pruning [32] 4.5G 3.4× 13.0 60 epochs
Winograd’s Filtering [23] 3.8G 4.0× 9.4 None
Pruning+Retraining [7] 3.0G 5.0× 10.88 20–40 epochs
Tucker Decomposition [31] 3.0G 5.0× 11.60 5–10 epochs
1D FALCON [Our scheme] 1.3G 11.4× 9.5 1–2 epochs

5.1. Speedup from the Low-Rank Approximation Stage:

The computational cost of the baseline 2D direct convolution is O(FI MNmnFO), where
each input feature map is of size (M × N), spatial two-dimensional kernels are of size (m × n)
and FI , FO are the input and output channels within a layer, respectively. However, using
our 1D-FALCON approximation scheme, the computational costs for the vertical stage and the
horizontal stage are O(FI MNmR), O(RMNnFO), respectively, resulting in a total computational
cost of O((mFI + nFO)MNR). If we choose R such that R(mFI + nFO) << mn(FI FO), then the
computational cost can be reduced. In practice, current state-of-the-art convolutional neural networks
use square kernels. Hence, let us assume m = n = p, which is the size of the kernel in the model. Using
this assumption, the condition can be simplified to R(FI + FO) << pFI FO. In addition, most modern
ConvNets use more channels in the higher layers than the corresponding lower layers, i.e., the channel
ratio FO

FI
>> 1. The higher the ratio, the larger the value of R can be. In most layers, the computation

cost can be reduced by p, which is the dimension of the kernel in the respective layer. Our evaluation
on VGG-16 showed an average speedup of 3–5 times in all layers and a maximum speedup of 8–9
times on many individual layers. Table 2 shows the layer-wise speedup of convolutions achieved in
the VGG-16 model using an Intel i7-5930k system. It is possible to push the limit of approximation
further with an increased loss in classification accuracy. This increased amount of loss can be recovered
back by fine-tuning the model; however, more approximation in the layer leads to longer fine-tuning
time. After a certain limit in the rank, the original baseline accuracy cannot be recovered back to an
acceptable level. Figure 6 shows an accuracy vs. approximation trade-off for few selected layers from
the VGG-16 model. In the figure the horizontal dashed line represents an acceptable loss of accuracy
of 1% from baseline.

Entropy 2018, 20, 305 13 of 20

Table 2. VGG16 layerwise speedup of convolution on i7-5930k (per image) with no loss in the baseline
accuracy of 90.5%.

Layer Original (ms) Compressed (ms) Speedup

conv3-64-1.1 28.5 15.0 1.9×
conv3-64-1.2 168.1 32.3 5.2×
conv3-128-2.1 74.1 25.6 2.9×
conv3-128-2.2 147.3 42.1 3.5×
conv3-256-3.1 67.3 15.7 4.3×
conv3-256-3.2 134.2 25.8 5.2×
conv3-256-3.3 134.5 27.4 4.9×
conv3-512-4.1 65.2 12.8 5.1×
conv3-512-4.2 129.9 22.0 5.9×
conv3-512-4.3 130.1 21.3 6.1×
conv3-512-5.1 33.4 4.3 7.8×
conv3-512-5.2 33.5 4.2 7.9×
conv3-512-5.3 33.4 4.2 7.9×

Total 1432.3 252.8 5.7×

50 100 150 200 250 300 350 400

Approximation (Rank)

-8

-7

-6

-5

-4

-3

-2

-1

0

1

A
cc
u
ra
cy
L
o
ss
(%
)

Accuracy vs Approximation trade-of

Margin

Conv3-64-1

Conv3-64-2

Conv3-128-1

Conv3-256-3

Conv3-512-4

Figure 6. Loss in accuracy(%) vs. rank-approximation of selected layers from the VGG16 Model.

5.2. Speedup from the Fast Convolution Stage

The 1D Toom–Cook algorithm requires (N + L − 1) multiplications compared to a direct
implementation which will require (N × L) multiplications, where N, L are the dimensions of an
input feature slice and a 1D filter, respectively. In case of VGG-16 model, we chose N = 4 and L = 3,
resulting in 2× savings in the total number of multiplications. As our modified VGG-16 model has
vertical and horizontal stages, in total it achieves 2× savings in the number of multiplications in each
1D stage. A 4× reduction in computational intensity is also possible if we use a variant of the algorithm
using output block size of 6. The ST , XT and W transformation matrices corresponding to this variant
is shown in Appendix D. However, this speedup is achievable at the cost of a seven-fold increase in
the memory footprint of the filters.

Entropy 2018, 20, 305 14 of 20

5.3. Efficient Use of Memory Bandwidth and Improved Local Reuse

Our 1D-FALCON scheme not only helps in reducing overall computational intensity but also
reduces cost of storage that arises from the convolutional layers. The cost of storage without application
of this scheme is FI FO p2, whereas cost reduces to (FI pR + RpFO) after approximation and separating
the kernels into two rectangular ones. If we choose R << p(FI FO)/(FI + FO), significant savings can
be made for the storage costs of the kernels. Table 3 shows an average 5× reduction in the overall
memory footprint of the model, whereas many individual layers achieve a 9–10× reduction. Fetching
data from off-chip main memory (DRAM) generates costs an order of magnitude greater than from
on-chip or local storage [34,35]. Chen et al. in their Eyeriss research project showed that row-stationary
1D convolution is the optimal solution for throughput and energy efficiency, as compared to the scheme
that uses classical 2D convolution [36]. Separable filters enable row-stationary 1D convolutions by
reducing the number of unnecessary data loads in padded convolution, dividing the convolution into
two 1D stages. To preserve information, many convolutional networks use zero-padding in many
layers. Around the image tile, there is an apron of pixels that is required in order to filter the image tile.
Note that the apron of one block also overlaps with the adjacent blocks. If we separate the convolution
into vertical and horizontal passes, it is no longer necessary to load the top and bottom apron regions
for the horizontal stage of computation. Similarly, for the vertical stage, it is no longer necessary to load
the left and right apron regions . This allows more efficient use of the available memory bandwidth
and on-chip storage. In case of strided convolution, this approach works very well.

Table 3. VGG16 model approximation summary.

Layer No. of
Parameters

Compressed Column
(FI × m × n × VR)

Compressed Row
(VR × m × n × FO)

Reduction in
Layer Size

conv3x3-64-1.1 2K 3× 3× 1× 4 4× 1× 3× 64 2.1×
conv3x3-64-1.2 37K 64× 3× 1× 12 12× 1× 3× 64 8.0×
conv3x3-128-2.1 74K 64× 3× 1× 40 40× 1× 3× 128 3.2×
conv3x3-128-2.2 148K 128× 3× 1× 40 40× 1× 3× 128 4.8×
conv3x3-256-3.1 295K 128× 3× 1× 50 50× 1× 3× 256 5.1×
conv3x3-256-3.2 590K 256× 3× 1× 60 60× 1× 3× 256 6.4×
conv3x3-256-3.3 590K 256× 3× 1× 70 70× 1× 3× 256 5.5×
conv3x3-512-4.1 1M 512× 3× 1× 80 80× 1× 3× 512 6.4×
conv3x3-512-4.2 2M 512× 3× 1× 100 100× 1× 3× 512 7.7×
conv3x3-512-4.3 2M 512× 3× 1× 110 110× 1× 3× 512 7.0×
conv3x3-512-5.1 2M 512× 3× 1× 80 80× 1× 3× 512 9.6×
conv3x3-512-5.2 2M 512× 3× 1× 78 78× 1× 3× 512 9.8×
conv3x3-512-5.3 2M 512× 3× 1× 78 78× 1× 3× 512 9.8×

5.4. Extension of the 1D Algorithm to a 2D Variant and Its Limitations

We can extend the one-dimensional convolution solution shown in Equation (35) for
two-dimensional convolution easily by nesting the first transforms inside the second transforms
as follows:

s = ST [(WwWT)� (XTxX)]S (39)

As a result of nesting, in a 2D convolution (L + N − 1)2, element-wise multiplications will be
required. By choosing different values of N a number of variants of this algorithm can be produced
using the steps shown in Figure 5. Using different variants of the algorithm, speeding up can be
achieved. Figure 7 shows a comparison of computational intensity between fast convolution and direct
convolution for different choices of output tile size. We can see from the figure that larger tile sizes
lead to a higher speedup. However, for the larger tile size the associated cost of memory footprint
increases dramatically. As we choose larger tile sizes, the filter tile size also needs to be increased
to match the dimensions, which results in an increased memory footprint. A comparison between
reduction in computational intensity and the increase in memory footprint associated with filters is

Entropy 2018, 20, 305 15 of 20

shown in Figure 8. As an example, using an output tile size of 6, the computational intensity can be
reduced by almost five times. However this speed up will result in a seven-fold increase in memory
footprint associated with the filters, which may be significant for embedded systems as they do not
have large on-chip memory.

1 2 3 4 5 6 7 8 9 10

Output Tile Dimension

0

100

200

300

400

500

600

700

800

900
N

u
m

b
e

r
o

f
M

u
lt
ip

lic
a

ti
o

n
s

Comparsion of Compute Intensity

Direct Convolution

Fast Convolution

Figure 7. Comparison of computational intensity using a variation of the algorithm F(M×M, 3×3),
where M denotes output tile dimension.

1 2 3 4 5 6 7 8 9 10

Output Tile Dimension

0

2

4

6

8

10

12

14

16

N
o

rm
a

liz
e

d
 C

o
s
t

Comparsion of Compute Intensity vs Memory Footprint

Reduction in compute intensity

Increase in filter memory footprint

Figure 8. Comparison of reduction in computational intensity and the increase in filter memory
footprint using a variation of the algorithm F(M×M, 3×3) where M denotes output tile dimension.

6. Conclusions

In this paper, we demonstrated that co-optimization of internal structure of the ConvNet models
and the underlying implementation of the fundamental algebraic operation form an efficient approach

Entropy 2018, 20, 305 16 of 20

to speedup inference in convolutional neural networks. In the first stage of our optimization pipeline,
to facilitate the structural optimization of the models we introduced an easy-to-implement and a
correlation-based mathematically well-grounded technique which approximates each filter bank by
exploiting inherent redundancies among feature maps in the ConvNets. Unlike many iterative pruning
and regularization techniques, our scheme does not require any time consuming fine-tuning and
yet preserves the baseline accuracy. In addition, the availability of several pre-tunes models with
different performance–accuracy targets can provide significant advantages for deploying ConvNets on
fast time-to-market emerging applications. The first stage of reduction in computational intensity is
augmented with a further fast convolution stage using the modified Toom–Cook algorithm. In this
stage, the total number of strong operations is reduced dramatically without any approximations
that may affect accuracy. We have evaluated our 1D-FALCON optimization scheme on a variety
of ConvNets targeting different datasets and model sizes. The results from the evaluation running
on a range of real hardware provides strong evidence that a significant speedup in ConvNet can be
achieved without sacrificing baseline accuracy by jointly optimizing the structure of the network and
the underlying implementation of fundamental convolution operations.

Acknowledgments: The authors would like to thank Daniel Bates from the computer architecture research group
at the University of Cambridge for insightful discussions, and Sean Holden from the artificial intelligence research
group at the University of Cambridge for valuable feedback in the early stages of this research. The authors also
would like to thank Rune Holm from ARM Ltd. for providing insightful feedback on the applicability of our
technique in the embedded system space. This research was supported by an EPSRC doctoral scholarship.

Author Contributions: Partha Maji conceived and designed the experiments after consulting with Robert Mullins;
Partha Maji performed the experiments; Partha Maji and Robert Mullins analyzed the data; Partha Maji wrote the
paper. Robert Mullins provided feedback and corrections. All authors have read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

ConvNet Convolutional Neural Network
ILSVRC The ImageNet Large Scale Visual Recognition Challenge
1D-FALCON One-Dimensional Fast Approximate Low-rank Convolution

Appendix A. Algorithm F(2×1, 3×1, {4×1})

The following 1D algorithm can be used to convolve a (4× 1) input with a (3× 1) filter. The output
of this algorithm will produce a (2× 1) output block. This 1D algorithm can also be easily nested
for use with a (3× 3) filter on a (4× 4) input tile to produce a (2× 2) output region. The output
transformation can be computed as follows:

[
s0

s1

]
=

[
1 1 1 0
0 1 −1 1

]
S0

S1

S2

S3

 (A1)

where intermediate results can be computed as follows:
S0

S1

S2

S3

 =

W0

W1

W2

W3

�

1 0 −1 0
0 1 1 0
0 −1 1 0
0 −1 0 1

x0

x1

x2

x3

 (A2)

Entropy 2018, 20, 305 17 of 20

and the filter transformation can be obtained as follows:
W0

W1

W2

W3

 =

1 0 0
1
2

1
2

1
2

1
2 − 1

2
1
2

0 0 1

w0

w1

w2

 (A3)

Appendix B. Algorithm F(3×1, 3×1, {5×1})

The following 1D algorithm can be used to convolve a (5× 1) input with a (3× 1) filter. The
output of this algorithm will produce a (3× 1) output block. This 1D algorithm can also be easily
nested to be used with a (3× 3) filter on a (5× 5) input tile to produce a (3× 3) output region. The
output transformation can be computed as follows:

s0

s1

s2

 =

1 1 1 1 0
0 1 −1 2 0
0 1 1 4 1

S0

S1

S2

S3

S4

 (A4)

where intermediate results can be computed as follows:
S0

S1

S2

S3

S4

 =

W0

W1

W2

W3

W4

�

2 −1 −2 1 0
0 −2 −1 1 0
0 2 −3 1 0
0 −1 0 1 0
0 2 −1 −2 1

x0

x1

x2

x3

x4

 (A5)

and the filter transformation can be obtained as follows:
W0

W1

W2

W3

W4

 =

1
2 0 0
− 1

2 − 1
2 − 1

2
− 1

6
1
6 − 1

6
1
6

1
3

2
3

0 0 1

w0

w1

w2

 (A6)

Appendix C. Additional Results from Other Widely Used CNNs

We have applied our technique to many other widely used CNNs trained on the ImageNet dataset.
In this section we provide a comprehensive summary of the speedup achieved from our experiments.

Table A1. A comparison of speedup of VGG-16 using different schemes.

CNNs #MULs (Millions) Speed-Up Top-5 Error (%) Fine-Tuning Time

AlexNet [37] 692 12.1× 19.8 1 epoch
VGG-16 [30] 15,300 11.4× 9.5 1–2 epochs
Inception-v1 [38] 1428 7.2× 10.7 3 epochs
ResNet-152 [39] 11,300 6.2× 5.3 2–3 epochs

Appendix D. Algorithm F(6×1, 3×1, {8×1})

The following 1D algorithm can be used to convolve a (8× 1) input with a (3× 1) filter. The output
of this algorithm will produce a (6× 1) output block. This 1D algorithm can also be easily nested to

Entropy 2018, 20, 305 18 of 20

be used with a (3× 3) filter on a (8× 8) input tile to produce a (6× 6) output region. The output
transformation can be computed as follows:

s0

s1

s2

s3

s4

s5

=

1 1 1 1 1 1 1 0
0 1 −1 2 −2 3 −3 0
0 1 1 4 4 9 9 0
0 1 −1 8 −8 27 −27 0
0 1 1 16 16 81 81 0
0 1 −4 32 −32 243 −243 1

S0

S1

S2

S3

S4

S5

S6

S7

(A7)

where intermediate results can be computed as follows:

S0

S1

S2

S3

S4

S5

S6

S7

=

W0

W1

W2

W3

W4

W5

W6

W7

� XT

x0

x1

x2

x3

x4

x5

x6

x7

(A8)

where

XT =

36 0 −49 0 14 0 −1 0
0 36 36 −13 −13 1 1 0
0 −36 36 13 −13 −1 1 0
0 18 9 −20 −10 2 1 0
0 −18 9 20 −10 −2 1 0
0 12 4 −15 −5 3 1 0
0 −12 4 15 −5 −3 1 0
0 −36 0 49 0 −14 0 1

(A9)

and the filter transformation can be obtained as follows:

W0

W1

W2

W3

W4

W5

W6

W7

=

1
36 0 0
1

48
1

48
1

48
1

48 − 1
48

1
48

− 1
120 − 1

60 − 1
30

− 1
120

1
60 − 1

30
1

720
1

240
1

80
1

720 − 1
240

1
80

0 0 1

w0

w1

w2

 (A10)

References

1. Abdel-Hamid, O.; Mohamed, A.; Jiang, H.; Deng, L.; Penn, G.; Yu, D. Convolutional Neural Networks for
Speech Recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 2014, 22, 1533–1545. [CrossRef]

2. Gehring, J.; Auli, M.; Grangier, D.; Yarats, D.; Dauphin, Y.N. Convolutional Sequence to Sequence Learning.
In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017.

3. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object
Detection. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), Caesars Palace, NV, USA, 26 June–1 July 2016; pp. 779–788.

http://dx.doi.org/10.1109/TASLP.2014.2339736

Entropy 2018, 20, 305 19 of 20

4. Sun, Y.; Wang, X.; Tang, X. Deep Learning Face Representation from Predicting 10,000 Classes. In Proceedings
of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June
2014; pp. 1891–1898.

5. Masoumi, M.; Hamza, A.B. Spectral shape classification: A deep learning approach. J. Vis. Commun. Image Represent.
2017, 43, 198–211. [CrossRef]

6. Cong, J.; Xiao, B. Minimizing Computation in Convolutional Neural Networks. In Artificial Neural Networks
and Machine Learning—ICANN 2014; Wermter, S., Weber, C., Duch, W., Honkela, T., Koprinkova-Hristova, P.,
Magg, S., Palm, G., Villa, A.E.P., Eds.; Springer International Publishing: Cham, Switzerland, 2014; pp. 281–290.

7. Han, S.; Pool, J.; Tran, J.; Dally, W.J. Learning Both Weights and Connections for Efficient Neural Networks.
In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; pp. 1135–1143.

8. Sze, V.; Chen, Y.H.; Einer, J.; Suleiman, A.; Zhang, Z. Hardware for machine learning: Challenges and
opportunities. In Proceedings of the 2017 IEEE Custom Integrated Circuits Conference (CICC), Austin, TX,
USA, 30 April–3 May 2017; pp. 1–8.

9. Forecast: The Internet of Things, Worldwide, 2013. Available online: https://www.gartner.com/doc/
2625419/forecast-internet-things-worldwide- (accessed on 24 December 2017).

10. Tishby, N.; Zaslavsky, N. Deep Learning and the Information Bottleneck Principle. In Proceedings of the
2015 IEEE Information Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015.

11. Cun, Y.L.; Denker, J.S.; Solla, S.A. Advances in Neural Information Processing Systems 2; Morgan Kaufmann
Publishers Inc.: San Francisco, CA, USA, 1990; pp. 598–605.

12. Hassibi, B.; Stork, D.G.; Wolff, G.J. Optimal Brain Surgeon and general network pruning. In Proceedings of
the IEEE International Conference on Neural Networks, San Francisco, CA, USA, 28 March–1 April 1993;
pp. 293–299.

13. Han, S.; Mao, H.; Dally, W.J. Deep Compression: Compressing Deep Neural Network with Pruning, Trained
Quantization and Huffman Coding. arXiv 2015, arXiv:1510.00149. [CrossRef]

14. Liu, B.; Wang, M.; Foroosh, H.; Tappen, M.; Penksy, M. Sparse Convolutional Neural Networks.
In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston,
MA, USA, 7–12 June 2015; pp. 806–814.

15. Denton, E.; Zaremba, W.; Bruna, J.; LeCun, Y.; Fergus, R. Exploiting Linear Structure Within Convolutional
Networks for Efficient Evaluation. In Advances in Neural Information Processing Systems; MIT Press:
Cambridge, MA, USA, 2014; pp. 1269–1277.

16. Jaderberg, M.; Vedaldi, A.; Zisserman, A. Speeding up Convolutional Neural Networks with Low Rank
Expansions. arXiv 2014, arXiv:1405.3866. [CrossRef]

17. Mamalet, F.; Garcia, C. Simplifying ConvNets for Fast Learning. In Artificial Neural Networks and Machine
Learning—ICANN 2012; Villa, A.E.P., Duch, W., Érdi, P., Masulli, F., Palm, G., Eds.; Springer: Berlin/Heidelberg,
Germany, 2012; pp. 58–65.

18. Rigamonti, R.; Sironi, A.; Lepetit, V.; Fua, P. Learning Separable Filters. In Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013;
pp. 2754–2761.

19. Gupta, S.; Agrawal, A.; Gopalakrishnan, K.; Narayanan, P. Deep Learning with Limited Numerical Precision.
In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille,
France, 6–11 July 2015; Volume 37, pp. 1737–1746.

20. Hubara, I.; Courbariaux, M.; Soudry, D.; El-Yaniv, R.; Bengio, Y. Binarized Neural Networks. In Advances in
Neural Information Processing Systems 29; Lee, D.D., Sugiyama, M., Luxburg, U.V., Guyon, I., Garnett, R., Eds.;
Curran Associates, Inc.: New York, NY, USA, 2016; pp. 4107–4115.

21. Gysel, P.; Motamedi, M.; Ghiasi, S. Hardware-oriented Approximation of Convolutional Neural Networks.
arXiv 2016, arXiv:1604.03168. [CrossRef]

22. Vasilache, N.; Johnson, J.; Mathieu, M.; Chintala, S.; Piantino, S.; LeCun, Y. Fast Convolutional Nets With
fbfft: A GPU Performance Evaluation. arXiv 2014, arXiv:1412.7580. [CrossRef]

23. Lavin, A.; Gray, S. Fast Algorithms for Convolutional Neural Networks. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Caesars Palace, NV, USA, 26 June–1 July
2016; pp. 4013–4021.

24. Li, S.R.; Park, J.; Tang, P.T.P. Enabling Sparse Winograd Convolution by Native Pruning. arXiv 2017,
arXiv:1702.08597. [CrossRef]

http://dx.doi.org/10.1016/j.jvcir.2017.01.001
https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-
https://www.gartner.com/doc/2625419/forecast-internet-things-worldwide-
http://dx.doi.org/1510.00149
http://dx.doi.org/1405.3866
http://dx.doi.org/1604.03168
http://dx.doi.org/1412.7580
http://dx.doi.org/1702.08597

Entropy 2018, 20, 305 20 of 20

25. Shwartz-Ziv, R.; Tishby, N. Opening the Black Box of Deep Neural Networks via Information. arXiv 2017,
arXiv:1703.00810. [CrossRef]

26. Hummel, R.L.; Lowe, D.G. Computing Large-Kernel Convolutions of Images; New York University: New York,
NY, USA, 1987.

27. Eckart, C.; Young, G. The approximation of one matrix by another of lower rank. Psychometrika 1936,
1, 211–218. 10.1007/BF02288367. [CrossRef]

28. Wang, Y.; Parhi, K. Explicit Cook-Toom algorithm for linear convolution. In Proceedings of the 2000 IEEE
International Conference on Acoustics, Speech, and Signal Processing, Istanbul, Turkey, 5–9 June 2000;
Volume 6, pp. 3279–3282.

29. Maji, P.; Mullins, R. 1D-FALCON: Accelerating Deep Convolutional Neural Network Inference by
Co-optimization ofModels and Underlying Arithmetic Implementation. In Artificial Neural Networks
and Machine Learning—ICANN 2017; Lintas, A., Rovetta, S., Verschure, P.F., Villa, A.E., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 21–29.

30. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
arXiv 2014, arXiv:1409.1556. [CrossRef]

31. Kim, Y.; Park, E.; Yoo, S.; Choi, T.; Yang, L.; Shin, D. Compression of Deep Convolutional Neural Networks
for Fast and Low Power Mobile Applications. arXiv 2015, arXiv:1511.06530. [CrossRef]

32. Molchanov, P.; Tyree, S.; Karras, T.; Aila, T.; Kautz, J. Pruning Convolutional Neural Networks for Resource
Efficient Transfer Learning. arXiv 2016, arXiv:1611.06440. [CrossRef]

33. Lebedev, V.; Lempitsky, V. Fast ConvNets Using Group-Wise Brain Damage. In Proceedings of the 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Caesars Palace, NV, USA, 26 June–1 July 2016;
pp. 2554–2564.

34. Dally, B. Power, Programmability, and Granularity: The Challenges of ExaScale Computing. In Proceedings
of the 2011 IEEE International Parallel Distributed Processing Symposium, Anchorage, AK, USA, 16–20 May
2011; pp. 878–878.

35. Horowitz, M. 1.1 Computing’s energy problem (and what we can do about it). In Proceedings of the 2014
IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, CA,
USA, 9–13 February 2014; pp. 10–14.

36. Chen, Y.H.; Emer, J.; Sze, V. Eyeriss: A Spatial Architecture for Energy-Efficient Dataflow for Convolutional
Neural Networks. In Proceedings of the 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA), Seoul, Korea, 18–22 June 2016; pp. 367–379.

37. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. In Advances in Neural Information Processing Systems 25; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

38. Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A.
Going Deeper with Convolutions.arXiv 2014, arXiv:1409.4842. [CrossRef]

39. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. arXiv 2015, arXiv:1512.03385.
[CrossRef].

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/1703.00810
https://doi.org/10.1007/BF02288367
http://dx.doi.org/10.1007/BF02288367
http://dx.doi.org/1409.1556
http://dx.doi.org/1511.06530
http://dx.doi.org/1611.06440
http://dx.doi.org/1409.4842
http://dx.doi.org/1512.03385
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Optimization of Deep Convolutional Neural Networks—An Information-Theoretic Approach
	Methodology
	Separable Filters
	Layerwise Approximation and Convolution by Separability
	Rank Search and Layer Restructuring Algorithm
	The Modified Toom–Cook's Fast 1D Convolution
	A Fast Convolution Algorithm for Filtering of Dimension Three Using the Modified Toom–Cook Scheme

	Results and Discussion
	Speedup from the Low-Rank Approximation Stage:
	Speedup from the Fast Convolution Stage
	Efficient Use of Memory Bandwidth and Improved Local Reuse
	Extension of the 1D Algorithm to a 2D Variant and Its Limitations

	Conclusions
	Algorithm F(21, 31, {41})
	Algorithm F(31, 31, {51})
	Additional Results from Other Widely Used CNNs
	Algorithm F(61, 31, {81})
	References

