7,664 research outputs found
Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m
Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m
wavelengths, despite significant application-driven demand for compact
picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and
holmium-doped fluoride fiber lasers incorporating a saturable absorber are
emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major
challenge to extend this coverage. Here, we propose a new approach using
dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple
linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses
with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m
(3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral
region and the most broadly tunable pulsed fiber laser to date. Numerical
simulations show excellent agreement with experiments and also offer new
insights into the underlying dynamics of FSF pulse generation. This highlights
the remarkable potential of both dysprosium as a gain material and FSF for
versatile pulse generation, opening new opportunities for mid-IR laser
development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201
Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing
The mid-infrared (mid-IR) spectral region holds great promise for new
laser-based sensing technologies, based on measuring strong mid-IR molecular
absorption features. Practical applications have been limited to date, however,
by current low-brightness broadband mid-IR light sources and slow
acquisition-time detection systems. Here, we report a new approach by
developing a swept-wavelength mid-infrared fiber laser, exploiting the broad
emission of dysprosium and using an acousto-optic tunable filter to achieve
electronically controlled swept-wavelength operation from 2.89 to 3.25 {\mu}m
(3070-3460 cm^-1). Ammonia (NH3) absorption spectroscopy is demonstrated using
this swept source with a simple room-temperature single-pixel detector, with
0.3 nm resolution and 40 ms acquisition time. This creates new opportunities
for real-time high-sensitivity remote sensing using simple, compact mid-IR
fiber-based technologies.Comment: Invited article for APL Photonic
Direct Detection of Dark Matter Debris Flows
Tidal stripping of dark matter from subhalos falling into the Milky Way
produces narrow, cold tidal streams as well as more spatially extended "debris
flows" in the form of shells, sheets, and plumes. Here we focus on the debris
flow in the Via Lactea II simulation, and show that this incompletely
phase-mixed material exhibits distinctive high velocity behavior. Unlike tidal
streams, which may not necessarily intersect the Earth's location, debris flow
is spatially uniform at 8 kpc and thus guaranteed to be present in the dark
matter flux incident on direct detection experiments. At Earth-frame speeds
greater than 450 km/s, debris flow comprises more than half of the dark matter
at the Sun's location, and up to 80% at even higher speeds. Therefore, debris
flow is most important for experiments that are particularly sensitive to the
high speed tail of the dark matter distribution, such as searches for light or
inelastic dark matter or experiments with directional sensitivity. We show that
debris flow yields a distinctive recoil energy spectrum and a broadening of the
distribution of incidence direction.Comment: 22 pages, 7 figures; accepted for publication in PR
- …