7,664 research outputs found

    Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m

    Full text link
    Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m wavelengths, despite significant application-driven demand for compact picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and holmium-doped fluoride fiber lasers incorporating a saturable absorber are emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major challenge to extend this coverage. Here, we propose a new approach using dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m (3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral region and the most broadly tunable pulsed fiber laser to date. Numerical simulations show excellent agreement with experiments and also offer new insights into the underlying dynamics of FSF pulse generation. This highlights the remarkable potential of both dysprosium as a gain material and FSF for versatile pulse generation, opening new opportunities for mid-IR laser development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201

    Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing

    Full text link
    The mid-infrared (mid-IR) spectral region holds great promise for new laser-based sensing technologies, based on measuring strong mid-IR molecular absorption features. Practical applications have been limited to date, however, by current low-brightness broadband mid-IR light sources and slow acquisition-time detection systems. Here, we report a new approach by developing a swept-wavelength mid-infrared fiber laser, exploiting the broad emission of dysprosium and using an acousto-optic tunable filter to achieve electronically controlled swept-wavelength operation from 2.89 to 3.25 {\mu}m (3070-3460 cm^-1). Ammonia (NH3) absorption spectroscopy is demonstrated using this swept source with a simple room-temperature single-pixel detector, with 0.3 nm resolution and 40 ms acquisition time. This creates new opportunities for real-time high-sensitivity remote sensing using simple, compact mid-IR fiber-based technologies.Comment: Invited article for APL Photonic

    Direct Detection of Dark Matter Debris Flows

    Full text link
    Tidal stripping of dark matter from subhalos falling into the Milky Way produces narrow, cold tidal streams as well as more spatially extended "debris flows" in the form of shells, sheets, and plumes. Here we focus on the debris flow in the Via Lactea II simulation, and show that this incompletely phase-mixed material exhibits distinctive high velocity behavior. Unlike tidal streams, which may not necessarily intersect the Earth's location, debris flow is spatially uniform at 8 kpc and thus guaranteed to be present in the dark matter flux incident on direct detection experiments. At Earth-frame speeds greater than 450 km/s, debris flow comprises more than half of the dark matter at the Sun's location, and up to 80% at even higher speeds. Therefore, debris flow is most important for experiments that are particularly sensitive to the high speed tail of the dark matter distribution, such as searches for light or inelastic dark matter or experiments with directional sensitivity. We show that debris flow yields a distinctive recoil energy spectrum and a broadening of the distribution of incidence direction.Comment: 22 pages, 7 figures; accepted for publication in PR
    • …
    corecore