17 research outputs found

    Utilizing the O-C Method to Determine Third-Body Existence in Eclipsing Binary Systems

    Get PDF
    Previous studies on the subject of eclipsing binaries (EBs) within the Kepler field have been adequately determined the period, distance, and other stellar parameters of these systems (Borkovits, et al. 2015). Additionally, with the use of Observed-minus-Calculated (O-C) plots, variation in the timing of timing of eclipses can be easily detected. The eclipse timing shifts may be caused by dynamical effects or by light-travel time effects (LTTE) caused by the existence of a third body. The following research was conducted on ten binaries within the Kepler “K2” Campaign 5 field whose light curves (LCs) showed evidence of eclipses with periods shorter than ten days. The timings of the eclipses were then investigated using the O-C method to search for variations and, if so, to deduce the cause of such variations and to determine the parameters of the binary

    Gyrochronology of Wide Binaries in the Kepler K2 Fields

    Get PDF
    Gyrochronology is the method of determining a stars age based on its rotation period and mass. A cool main sequence star loses it\u27s angular momentum as it ages, so the rotation rate slows down. Gyrochronology has been tested on star clusters in previous studies and now we are applying the theory to binary stars. Components of a binary should be the same age, so Gyrochronology should return the same age for both stars in binary systems. We examined the rotation periods for 290 wide binary main sequence stars in the Kepler K2 fields. These observations are part of a continuing investigation of Gyrochronology. Using the determined rotation periods and color index (a proxy for mass), we estimated ages for ~20 binary pairs. Presented here is a status report on our analysis of data from the K2 and the calculated ages of the studied binaries

    An Additional Pulsating Mode (7.35 mHz) and Pulsations Timing Variations of PG 1613+426

    Get PDF
    We present the detection of an additional pulsation mode (7.35 mHz) of a subdwarf B star, PG 1613+426, and periodic Observed minus Calculated (O-C) variations for two existing pulsations. PG 1613+426 is near the hot end of the sdB instability strip. One pulsation mode (6.94 mHz) was detected so far by Bonanno et al. (2002) and another pulsation mode candidate (7.05 mHz) was proposed with a confidence level above 90% by Kuassivi and Ferlet (2005). To constrain sdB star evolutional scenarios, this star was monitored in 2010, 2011, 2015, and 2017 as a part of a project for finding companions to sdB stars using the pulsation timing method. The photometric analysis of those data shows an additional 7.35 mHz pulsation mode as well as the previously detected 6.93 mHz mode. However the 7.05 mHz mode was not detected. Nightly amplitude changes of 7.35 mHz mode were observed in the 2011 data, however the 2017 data did not show nightly amplitude shifts. O-C variations were detected in both 6.93 mHz and 7.35 mHz pulsations, indicating that PG 1613+426 may have a low mass companion star. However, more observations are needed to confirm it

    Utilizing the O-C Method to Determine Third-Body Existence in Eclipsing Binary Systems

    Get PDF
    Previous studies on the subject of eclipsing binaries (EBs) within the Kepler field have been adequately determined the period, distance, and other stellar parameters of these systems (Borkovits, et al. 2015). Additionally, with the use of Observed-minus-Calculated (O-C) plots, variation in the timing of timing of eclipses can be easily detected. The eclipse timing shifts may be caused by dynamical effects or by light-travel time effects (LTTE) caused by the existence of a third body. The following research was conducted on ten binaries within the Kepler “K2” Campaign 5 field whose light curves (LCs) showed evidence of eclipses with periods shorter than ten days. The timings of the eclipses were then investigated using the O-C method to search for variations and, if so, to deduce the cause of such variations and to determine the parameters of the binary

    An additional pulsating mode (7.35 mHz) and pulsations timing variations of PG 1613+426

    No full text
    We present the detection of an additional pulsation mode (7.35 mHz) of a subdwarf B star, PG 1613+426, and periodic Observed minus Calculated (O-C) variations for two existing pulsations. PG 1613+426 is near the hot end of the sdB instability strip. One pulsation mode (6.94 mHz) was detected so far by Bonanno et al. (2002) and another pulsation mode candidate (7.05 mHz) was proposed with a confidence level above 90% by Kuassivi and Ferlet (2005). To constrain sdB star evolutional scenarios, this star was monitored in 2010, 2011, 2015, and 2017 as a part of a project for finding companions to sdB stars using the pulsation timing method. The photometric analysis of those data shows an additional 7.35 mHz pulsation mode as well as the previously detected 6.93 mHz mode. However the 7.05 mHz mode was not detected. Nightly amplitude changes of 7.35 mHz mode were observed in the 2011 data, however the 2017 data did not show nightly amplitude shifts. O-C variations were detected in both 6.93 mHz and 7.35 mHz pulsations, indicating that PG 1613+426 may have a low mass companion star. However, more observations are needed to confirm it

    Gyrochronology of Wide Binaries in the Kepler K2 Fields

    Get PDF
    Gyrochronology is the method of determining a stars age based on its rotation period and mass. A cool main sequence star loses it\u27s angular momentum as it ages, so the rotation rate slows down. Gyrochronology has been tested on star clusters in previous studies and now we are applying the theory to binary stars. Components of a binary should be the same age, so Gyrochronology should return the same age for both stars in binary systems. We examined the rotation periods for 290 wide binary main sequence stars in the Kepler K2 fields. These observations are part of a continuing investigation of Gyrochronology. Using the determined rotation periods and color index (a proxy for mass), we estimated ages for ~20 binary pairs. Presented here is a status report on our analysis of data from the K2 and the calculated ages of the studied binaries

    A Monte Carlo Method for Evaluating Empirical Gyrochronology Models and Its Application to Wide Binary Benchmarks

    Get PDF
    Accurate stellar ages are essential for our understanding of the star formation history of the Milky Way, Galactic chemical evolution, and to constrain exoplanet formation models. Gyrochronology, a relationship between stellar rotation and age, appears to offer a reliable age indicator for main sequence (MS) stars over the mass range of approximately 0.6 to 1.3 MM_\odot. Those stars lose their angular momentum due to magnetic braking and as a result, their rotation speeds decrease with age. Although current gyrochronology relations are fairly well tested for young MS stars with masses greater than 1 MM_\odot, primarily in young open clusters, insufficient tests exist for older and lower mass MS stars. Binary stars offer the potential to expand and fill in the range of ages and metallicity over which gyrochronology can be empirically tested. In this paper, we demonstrate a Monte Carlo approach to evaluate gyrochronology models using binary stars. As examples, we used five previously published wide binary pairs. We also demonstrate a Monte Carlo approach to assess the precision and accuracy of ages derived from each gyrochronology model. For the traditional Skumanich models, the age uncertainties are σage\sigma_{age}/ageage = 15-20\% for stars with BVB-V = 0.65, and σage\sigma_{age}/ageage = 5-10\% for stars with BVB-V = 1.5 and rotation period P \leq 20 days.Comment: Accepted to Ap

    Characterization and Pilot Human Trial of Dedicated Breast Ring Positron Emission Tomography (BRPET) System

    No full text
    We describe the design and performance of BRPET, a novel dedicated breast PET (dbPET) scanner designed to maximize visualization of posterior regions of the breast. BRPET uses prone imaging geometry and a 12-module detector ring built from pixelated LYSO crystals coupled to position sensitive photomultiplier tubes (PSPMTs). Optical coupling via slanted plastic fiber optic light guides permits partial insertion of the crystals into the exam table’s breast aperture. Image quality testing procedures were adapted from the NEMA NU4-2008 protocol. Two additional phantom tests quantified the posterior extent of the usable volume of view (VoV). BRPET axial, radial, and tangential FWHM spatial resolutions at the isocenter were 1.8, 1.7, and 1.9 mm, respectively. The peak absolute system sensitivity was 0.97% using an energy window of 460–562 keV. The peak noise equivalent counting rate was 5.33 kcps at 21.6 MBq. The scanner VoV extends to within ~6 mm of the plane defining the location of the chest wall. A pilot human study (n = 10) compared the diagnostic performance of FDG-BRPET to that of contrast enhanced MRI (CEMRI), with biopsy as ground truth. Averaged over three expert human observers, the sensitivity/specificity for BRPET was 0.93/1.0, compared to 1.0/0.25 for CEMRI
    corecore