8,110 research outputs found
Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing
The mid-infrared (mid-IR) spectral region holds great promise for new
laser-based sensing technologies, based on measuring strong mid-IR molecular
absorption features. Practical applications have been limited to date, however,
by current low-brightness broadband mid-IR light sources and slow
acquisition-time detection systems. Here, we report a new approach by
developing a swept-wavelength mid-infrared fiber laser, exploiting the broad
emission of dysprosium and using an acousto-optic tunable filter to achieve
electronically controlled swept-wavelength operation from 2.89 to 3.25 {\mu}m
(3070-3460 cm^-1). Ammonia (NH3) absorption spectroscopy is demonstrated using
this swept source with a simple room-temperature single-pixel detector, with
0.3 nm resolution and 40 ms acquisition time. This creates new opportunities
for real-time high-sensitivity remote sensing using simple, compact mid-IR
fiber-based technologies.Comment: Invited article for APL Photonic
Mode-locked dysprosium fiber laser: picosecond pulse generation from 2.97 to 3.30 {\mu}m
Mode-locked fiber laser technology to date has been limited to sub-3 {\mu}m
wavelengths, despite significant application-driven demand for compact
picosecond and femtosecond pulse sources at longer wavelengths. Erbium- and
holmium-doped fluoride fiber lasers incorporating a saturable absorber are
emerging as promising pulse sources for 2.7--2.9 {\mu}m, yet it remains a major
challenge to extend this coverage. Here, we propose a new approach using
dysprosium-doped fiber with frequency shifted feedback (FSF). Using a simple
linear cavity with an acousto-optic tunable filter, we generate 33 ps pulses
with up to 2.7 nJ energy and 330 nm tunability from 2.97 to 3.30 {\mu}m
(3000--3400 cm^-1)---the first mode-locked fiber laser to cover this spectral
region and the most broadly tunable pulsed fiber laser to date. Numerical
simulations show excellent agreement with experiments and also offer new
insights into the underlying dynamics of FSF pulse generation. This highlights
the remarkable potential of both dysprosium as a gain material and FSF for
versatile pulse generation, opening new opportunities for mid-IR laser
development and practical applications outside the laboratory.Comment: Accepted for APL Photonics, 22nd August 201
Where is the pseudoscalar glueball ?
The pseudoscalar mesons with the masses higher than 1 GeV are assumed to
belong to the meson decuplet including the glueball as the basis state
supplementing the standard nonet of light states
. The decuplet is investigated by means of an algebraic approach based
on hypothesis of vanishing the exotic commutators of "charges" and
their time derivatives. These commutators result in a system of equations
determining contents of the isoscalar octet state in the physical isoscalar
mesons as well as the mass formula including all masses of the decuplet:
, K(1460), , and . The physical
isoscalar mesons , are expressed as superpositions of the "ideal"
states ( and ) and the glueball with the mixing
coefficient matrix following from the exotic commutator restrictions. Among
four one-parameter families of the calculated mixing matrix (numerous solutions
result from bad quality of data on the and K(1460) masses) there is
one family attributing the glueball-dominant composition to the
meson. Similarity between the pseudoscalar and scalar decuplets, analogy
between the whole spectra of the and mesons and affinity of
the glueball with excited states are also noticed.Comment: 18 pp., 2. figs., 2 tabs.; Published version. One of the authors
withdraws his nam
Universal condition for critical percolation thresholds of kagome-like lattices
Lattices that can be represented in a kagome-like form are shown to satisfy a
universal percolation criticality condition, expressed as a relation between
P_3, the probability that all three vertices in the triangle connect, and P_0,
the probability that none connect. A linear approximation for P_3(P_0) is
derived and appears to provide a rigorous upper bound for critical thresholds.
A numerically determined relation for P_3(P_0) gives thresholds for the kagome,
site-bond honeycomb, (3-12^2), and "stack-of-triangle" lattices that compare
favorably with numerical results.Comment: Several new figures and small change
Recommended from our members
Tailoring the Mechanical Properties of Selective Laser Sintered Parts
The ~£1 million IMCRC-funded integrated project ‘Personalised Sports Footwear: From
Elite to High Street’ is investigating the use of Rapid Manufacturing to produce personalised
sports shoes, with the aim of enhancing performance, reducing injury, and providing improved
functionality.
Research has identified that, for sprinting, performance benefits can be achieved by
tuning the bending stiffness of a shoe to the characteristics of an individual athlete. This paper
presents research to date on several novel methods of influencing the mechanical properties of
Selective Laser Sintered shoe soles, with a particular focus on stiffness.Mechanical Engineerin
Percolation in Networks with Voids and Bottlenecks
A general method is proposed for predicting the asymptotic percolation
threshold of networks with bottlenecks, in the limit that the sub-net mesh size
goes to zero. The validity of this method is tested for bond percolation on
filled checkerboard and "stack-of-triangle" lattices. Thresholds for the
checkerboard lattices of different mesh sizes are estimated using the gradient
percolation method, while for the triangular system they are found exactly
using the triangle-triangle transformation. The values of the thresholds
approach the asymptotic values of 0.64222 and 0.53993 respectively as the mesh
is made finer, consistent with a direct determination based upon the predicted
critical corner-connection probability.Comment: to appear, Physical Review E. Small changes from first versio
- …