642 research outputs found

    Dustinguishing isomers by NMR analysis

    Get PDF
    This article does not have an abstract

    Use of isotopes for studying reaction mechanisms: 3. Secondary kinetic isotope effect

    Get PDF
    The effects of isotopic substitution on equilibrium constants and reaction rates in processes which do not directly involve the isotopic atom are described. In particular, the mechanistic details which can be obtained by quantifying the secondary kinetic isotope effect and steric isotope effect are illustrated

    Laser-induced electron localization in H2+_2^+: Mixed quantum-classical dynamics based on the exact time-dependent potential energy surface

    Full text link
    We study the exact nuclear time-dependent potential energy surface (TDPES) for laser-induced electron localization with a view to eventually developing a mixed quantum-classical dynamics method for strong-field processes. The TDPES is defined within the framework of the exact factorization [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] and contains the exact effect of the couplings to the electronic subsystem and to any external fields within a scalar potential. We compare its features with those of the quasistatic potential energy surfaces (QSPES) often used to analyse strong-field processes. We show that the gauge-independent component of the TDPES has a mean-field-like character very close to the density-weighted average of the QSPESs. Oscillations in this component are smoothened out by the gauge-dependent component, and both components are needed to yield the correct force on the nuclei. Once the localization begins to set in, the gradient of the exact TDPES tracks one QSPES and then switches to the other, similar to the description provided by surface-hopping between QSPESs. We show that evolving an ensemble of classical nuclear trajectories on the exact TDPES accurately reproduces the exact dynamics. This study suggests that the mixed quantum-classical dynamics scheme based on evolving multiple classical nuclear trajectories on the exact TDPES will be a novel and useful method to simulate strong field processes.Comment: 10 pages, 6 figure

    Time-dependent density functional theory: Past, present, and future

    Full text link
    Time-dependent density functional theory (TDDFT) is presently enjoying enormous popularity in quantum chemistry, as a useful tool for extracting electronic excited state energies. This article discusses how TDDFT is much broader in scope, and yields predictions for many more properties. We discuss some of the challenges involved in making accurate predictions for these properties.Comment: 12 pages, 4 figure

    A complete description of the magnetic ground state in spinel vanadates

    Full text link
    Capturing the non-collinear magnetic ground state of the spinel vanadates AV2_2O4_4 (A= Mn, Fe and Co) remains an outstanding challenge for state-of-the-art ab-initio methods. We demonstrate that both the non-collinear spin texture, as well as the magnitude of local moments, are captured by a single value of the on-site Hubbard UU of 2.7~eV in conjunction with the local spin density approximation (LSDA+UU), provided the source term (i.e., magnetic monopole term) is removed from the exchange-correlation magnetic field BXC{\bf B}_{XC}. We further demonstrate that the magnetic monopole structure in BXC{\bf B}_{XC} is highly sensitive to the value of UU, to the extent that the interplay between on-site localization and local moment magnitude is qualitatively different depending on whether the source term is removed or not. This suggests that in treating strongly correlated magnetic materials within the LSDA+UU formalism, subtraction of the unphysical magnetic monopole term from the exchange-correlation magnetic field is essential to correctly treat the magnetic ground state.Comment: 4 pages, 3 figure

    Location, function, and nucleotide sequence of a promoter for bacteriophage T3 RNA polymerase

    Get PDF
    The major promoters for bacteriophage T3 RNA polymerase on the T3 genome have been mapped by DNA.RNA filter hybridization. One promoter is located in a 300-base-pair Hpa I restriction fragment near the genetic "left" end of T3 DNA. The sequence in the vicinity of the major initiation site of transcription in this region has been determined. A part of the (-)strand sequence is 5' T-A-T-T-T-A-C-C-C-T-C-A-C-T-A-A-A-G-+1 G-G-A-A-U 3'. Comparison of this sequence with the prototype 23-base-pair promoter sequence for bacteriophage T7 RNA polymerase shows a striking pattern of homology and divergence. Between positions -9 and +4, the sequences are virtually identical, whereas between positions -17 and -10, the sequences are quite different. It is postulated that these sequence subsets may perform different functions in transcription initiation by the phage RNA polymerases

    Excitations in time-dependent density-functional theory

    Full text link
    An approximate solution to the time-dependent density functional theory (TDDFT) response equations for finite systems is developed, yielding corrections to the single-pole approximation. These explain why allowed Kohn-Sham transition frequencies and oscillator strengths are usually good approximations to the true values, and why sometimes they are not. The approximation yields simple expressions for G\"orling-Levy perturbation theory results, and a method for estimating expectation values of the unknown exchange-correlation kernel.Comment: 4 pages, 1 tabl

    Correlated electron-nuclear dynamics: Exact factorization of the molecular wavefunction

    Get PDF
    It was recently shown [A. Abedi, N. T. Maitra, and E. K. U. Gross, Phys. Rev. Lett. 105, 123002 (2010)] that the complete wavefunction for a system of electrons and nuclei evolving in a timedependent external potential can be exactly factorized into an electronic wavefunction and a nuclear wavefunction. The concepts of an exact time-dependent potential energy surface (TDPES) and exact time-dependent vector potential emerge naturally from the formalism. Here, we present a detailed description of the formalism, including a full derivation of the equations that the electronic and nuclear wavefunctions satisfy. We demonstrate the relationship of this exact factorization to the traditional Born-Oppenheimer expansion. A one-dimensional model of the H + 2 molecule in a laser field shows the usefulness of the exact TDPES in interpreting coupled electron-nuclear dynamics: we show how features of its structure indicate the mechanism of dissociation. We compare the exact TDPES with potential energy surfaces from the time-dependent Hartree-approach, and also compare traditional Ehrenfest dynamics with Ehrenfest dynamics on the exact TDPES
    corecore