2,042 research outputs found

    Long-range excitations in time-dependent density functional theory

    Full text link
    Adiabatic time-dependent density functional theory fails for excitations of a heteroatomic molecule composed of two open-shell fragments at large separation. Strong frequency-dependence of the exchange-correlation kernel is necessary for both local and charge-transfer excitations. The root of this is static correlation created by the step in the exact Kohn-Sham ground-state potential between the two fragments. An approximate non-empirical kernel is derived for excited molecular dissociation curves at large separation. Our result is also relevant for the usual local and semi-local approximations for the ground-state potential, as static correlation there arises from the coalescence of the highest occupied and lowest unoccupied orbital energies as the molecule dissociates.Comment: 7 pages, 2 figure

    Magnetic and orbital order in overdoped bilayer manganites

    Full text link
    The magnetic and orbital orders for the bilayer manganites in the doping region 0.5<x<1.00.5 < x <1.0 have been investigated from a model that incorporates the two ege_g orbitals at each Mn site, the inter-orbital Coulomb interaction and lattice distortions. The usual double exchange operates via the ege_g orbitals. It is shown that such a model reproduces much of the phase diagram recently obtained for the bilayer systems in this range of doping. The C-type phase with (Ï€,0,Ï€\pi,0,\pi) spin order seen by Ling et al. appears as a natural consequence of the layered geometry and is stabilised by the static distortions of the system. The orbital order is shown to drive the magnetic order while the anisotropic hopping across the ege_g orbitals, layered nature of the underlying structure and associated static distortions largely determine the orbital arrangements.Comment: 8 pages, 5 figure

    Identification of two new HMXBs in the LMC: a ∼\sim2013 s pulsar and a probable SFXT

    Full text link
    We report on the X-ray and optical properties of two high-mass X-ray binary systems located in the Large Magellanic Cloud (LMC). Based on the obtained optical spectra, we classify the massive companion as a supergiant star in both systems. Timing analysis of the X-ray events collected by XMM-Newton revealed the presence of coherent pulsations (spin period ∼\sim2013 s) for XMMU J053108.3-690923 and fast flaring behaviour for XMMU J053320.8-684122. The X-ray spectra of both systems can be modelled sufficiently well by an absorbed power-law, yielding hard spectra and high intrinsic absorption from the environment of the systems. Due to their combined X-ray and optical properties we classify both systems as SgXRBs: the 19th^{\rm th} confirmed X-ray pulsar and a probable supergiant fast X-ray transient in the LMC, the second such candidate outside our Galaxy.Comment: 12 pages, 10 figures, accepted for publication in MNRA

    Adaptive Seeding for Gaussian Mixture Models

    Full text link
    We present new initialization methods for the expectation-maximization algorithm for multivariate Gaussian mixture models. Our methods are adaptions of the well-known KK-means++ initialization and the Gonzalez algorithm. Thereby we aim to close the gap between simple random, e.g. uniform, and complex methods, that crucially depend on the right choice of hyperparameters. Our extensive experiments indicate the usefulness of our methods compared to common techniques and methods, which e.g. apply the original KK-means++ and Gonzalez directly, with respect to artificial as well as real-world data sets.Comment: This is a preprint of a paper that has been accepted for publication in the Proceedings of the 20th Pacific Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2016. The final publication is available at link.springer.com (http://link.springer.com/chapter/10.1007/978-3-319-31750-2 24

    Undoing static correlation: Long-range charge transfer in time-dependent density functional theory

    Full text link
    Long-range charge transfer excited states are notoriously badly underestimated in time-dependent density functional theory (TDDFT). We resolve how {\it exact} TDDFT captures charge transfer between open-shell species: in particular the role of the step in the ground-state potential, and the severe frequency-dependence of the exchange-correlation kernel. An expression for the latter is derived, that becomes exact in the limit that the charge-transfer excitations are well-separated from other excitations. The exchange-correlation kernel has the task of undoing the static correlation in the ground state introduced by the step, in order to accurately recover the physical charge-transfer states.Comment: 2 figure

    Nature of the spiral state, electric polarisation and magnetic transitions in Sr-doped YBaCuFeO5_5: A first-principles study

    Full text link
    Contradictory results on the ferroelectric response of type II multiferroic YBaCuFeO5_{5}, in its incommensurate phase, has of late, opened up a lively debate. There are ambiguous reports on the nature of the spiral magnetic state. Using first-principles DFT calculations for the parent compound within LSDA+U+SO approximation, the multiferroic response and the nature of spiral state is revealed. The helical spiral is found to be more stable below the transition temperature as spins prefer to lie in ab plane. The Dzyaloshinskii-Moriya (DM) interaction and the spin current mechanism were earlier invoked to account for the electric polarisation in this system. However, the DM interaction is found to be absent, spin current mechanism is not valid in the helical spiral state and there is no electric polarisation thereof. These results are in good agreement with the recent single-crystal data. We also investigate the magnetic transitions in YBa1−x_{1-x}Srx_xCuFeO5_5 for the entire range 0≤x≤10\le x\le 1 of doping. The exchange interactions are estimated as a function of doping and a quantum Monte Carlo (QMC) calculation on an effective spin Hamiltonian shows that the paramagnetic to commensurate phase transition temperature increases with doping till x=0.5x=0.5 and decreases beyond. Our observations are consistent with experimental findings.Comment: 8 pages, 7 figure

    Modeling Willingness-to-Pay Values for Rural Bus Attributes Under Different Trip Purposes

    Get PDF
    Modeling Willingness-to-Pay Values for Rural Bus Attributes Under Different Trip Purpose

    The Jet in the Galactic Center: An Ideal Laboratory for Magnetohydrodynamics and General Relativity

    Full text link
    In this paper we review and discuss some of the intriguing properties of the Galactic Center supermassive black hole candidate Sgr A*. Of all possible black hole sources, the event horizon of Sgr A*, subtends the largest angular scale on the sky. It is therefore a prime candidate to study and image plasma processes in strong gravity and it even allows imaging of the shadow cast by the event horizon. Recent mm-wave VLBI and radio timing observations as well as numerical GRMHD simulations now have provided several breakthroughs that put Sgr A* back into the focus. Firstly, VLBI observations have now measured the intrinsic size of Sgr A* at multiple frequencies, where the highest frequency measurements have approached the scale of the black hole shadow. Moreover, measurements of the radio variability show a clear time lag between 22 GHz and 43 GHz. The combination of size and timing measurements, allows one to actually measure the flow speed and direction of magnetized plasma at some tens of Schwarzschild radii. This data strongly support a moderately relativistic outflow, consistent with an accelerating jet model. This is compared to recent GRMHD simulation that show the presence of a moderately relativistic outflow coupled to an accretion flow Sgr A*. Further VLBI and timing observations coupled to simulations have the potential to map out the velocity profile from 5-40 Schwarzschild radii and to provide a first glimpse at the appearance of a jet-disk system near the event horizon. Future submm-VLBI experiments would even be able to directly image those processes in strong gravity and directly confirm the presence of an event horizon.Comment: invited talk to appear in "Jets on All Scales", IAU Symposium 275, G.E. Romero, R.A. Sunyaev & T. Belloni, eds., Cambridge University Press, 9 pages, LaTex, 4 figure
    • …
    corecore