4,926 research outputs found
Determination of the Concentration of Gases by Measurement of Pressure
For the determination of the concentration of gases by means of pressure measurement, a precise equation of state is given by which analysis can be carried out within an accuracy of 10 ppm. The parameters of the equation of state are explicitely reported for carbon dioxide, argon, and helium
Synthetic magnetism for photon fluids
We develop a theory of artificial gauge fields in photon fluids for the cases
of both second-order and third-order optical nonlinearities. This applies to
weak excitations in the presence of pump fields carrying orbital angular
momentum, and is thus a type of Bogoliubov theory. The resulting artificial
gauge fields experienced by the weak excitations are an interesting
generalization of previous cases and reflect the PT-symmetry properties of the
underlying non-Hermitian Hamiltonian. We illustrate the observable consequences
of the resulting synthetic magnetic fields for examples involving both
second-order and third-order nonlinearities
Measurement and modelling of mass diffusion coefficients for application in carbon dioxide storage and enhanced oil recovery
In this work, measurements were carried out by the Taylor dispersion method [1, 2] to determine the
mutual diffusion coefficient for CO2 in water or hydrocarbon at effectively infinite dilution.
Measurements were carried out for CO2 in water, hexane, heptane, octane, decane, dodecane,
hexadecane, cyclohexane, squalane and toluene at temperatures between 298 K and 423 K with
pressures up to 69 MPa. Measurements of CO2 diffusivity in different brines were also carried out by
13C pulsed-field gradient NMR
Thermal diffusion segregation in granular binary mixtures described by the Enskog equation
Diffusion induced by a thermal gradient in a granular binary mixture is
analyzed in the context of the (inelastic) Enskog equation. Although the Enskog
equation neglects velocity correlations among particles which are about to
collide, it retains spatial correlations arising from volume exclusion effects
and thus it is expected to apply to moderate densities. In the steady state
with gradients only along a given direction, a segregation criterion is
obtained from the thermal diffusion factor measuring the amount of
segregation parallel to the thermal gradient. As expected, the sign of the
factor provides a criterion for the transition between the Brazil-nut
effect (BNE) and the reverse Brazil-nut effect (RBNE) by varying the parameters
of the mixture (masses, sizes, concentration, solid volume fraction, and
coefficients of restitution). The form of the phase diagrams for the BNE/RBNE
transition is illustrated in detail for several systems, with special emphasis
on the significant role played by the inelasticity of collisions. In
particular, an effect already found in dilute gases (segregation in a binary
mixture of identical masses and sizes {\em but} different coefficients of
restitution) is extended to dense systems. A comparison with recent computer
simulation results shows a good qualitative agreement at the level of the
thermal diffusion factor. The present analysis generalizes to arbitrary
concentration previous theoretical results derived in the tracer limit case.Comment: 7 figures, 1 table. To appear in New J. Phys., special issue on
"Granular Segregation
- …