DETERMINATION OF THE CONCENTRATION OF GASES BY
 MEASUREMENT OF PRESSURE

KEY WORDS: Determination of Concentration, Gases, Equation of State, Pressure Measurement
H.Langhals

Institut für Organische Chemie
der Universität München
Karlstraße 23, D-8000 München 2, Germany

Abstract

For the determination of the concentration of gases by means of pressure measurement, a precise equation of state is given by which analysis can be carried out within an accuracy of 10 ppm . The parameters of the equation of state are explicitely reported for carbon dioxide, argon, and helium.

INTRODUCTION
The determination of the density or concentration of pure gases is usually carried out by a precise and
simple pressure measurement as a standard procedure. Densities and concentrations are thereof obtained by use of an equation of state. The precision of this determination method is generally limited by the validity of the equation. Gases with low densities are precisely described by the ideal gas law. However, an equation of general validity doesn't exist for gases with high densities ${ }^{1-4}$.

RESULTS AND DISCUSSION
In other context we found, that pure gases form three different structures with increasing density: at low density a structure with nearly free motion of the particles, at higher density a structure which is characterized by the contact of particles, and at high density a densely packed state. The transition between these structures is rather abrupt. Therefore, gases are described best by three different equations corresponding to the three different structures.

For the concentration region I, at low densities, the pressure as a function of concentration is described best by equation (1), in which c is the molar

$$
\begin{equation*}
p=F_{p} \cdot \ln \left(c+c^{*}\right)+p^{\prime} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\ln \left(p+p^{*}\right)=F_{c} \cdot c+c^{0} \tag{2}
\end{equation*}
$$

concentration of the gas (the density can be calculated thereof in the usual manner). p is the pressure and F_{p} and c^{*} are the parameters of the equation. The additional parameter p^{\prime} is zero in region I. The precise validity of eq. (1) is demonstrated by fig. 1 in which a linear correlation between p and $\ln \left(c / c^{*}+1\right)$ is shown for CO_{2} at $75.260^{\circ} \mathrm{C}$ on the basis of the precise measurements of A.Michels and C.Michels ${ }^{5}$. A straight line is obtained with a correlation factor of 0.999998 (10 points). The F_{p} value is 133.4 at and the c^{*} value $4.59 \mathrm{~mol}^{-1} \mathrm{l}^{-1}$. The latter is calculated by an iterative procedure.

Eq. (1) holds up to a critical concentration c_{k} (I-II) of $3.1 \mathrm{~mol} \cdot \mathrm{I}^{-1}$. With higher concentrations, there is an abrupt change of medium structure. In this case (region II) eq. (1) holds too, but with different parameters F_{p} and c^{*}, and the p^{\prime} value is not zero.

At the even higher concentration c_{k} (II-III) of 10 mol. 1^{-1} a second change in medium structure is observed. This high density region III is described by eq. (2). F_{c}, p^{*}, and c° are the parameters of the equation. The formation of a liquid phase is due to a limited miscibility between the structures of region II and III. Therefore, the equations hold until the second phase is formed. On the basis of these results the complete diagram of the liquid and gaseous state of

FIG. 1: Linear correlation between p and $\ln \left(\mathrm{c} / \mathrm{c}^{\star}+{ }^{1}{ }^{1}\right)$
according to eq. (1) $\left(\mathrm{CO}_{2}\right.$ at $\left.75.260^{\mathrm{C}} \mathrm{C}, \mathrm{c}<3.1 \mathrm{~mol} \cdot \mathrm{l}^{-1}\right)$.
CO_{2} can be drawn, as shown in fig. 2. The parameters of the eq. (1) and (2) are given in Table 1. The gases argon and helium are described in the same manner as carbondioxide - see Tables 2 and 3.

TEMPERATURE DEPENDENCE OF PARAMETERS
The c_{k}-values are essentially independent of temperature. For the other parameters a linear interpolation between the experimental data of Tables 1 to 3

FIG. 2: Diagram of state of CO_{2} - pressure measurements are taken from lit ${ }^{5}$ - curves are calculated by means of eq. (1) and (2). For clearness the measurements at very high pressure are omitted, but have been taken into account for the calculation of the curves. Temperatures: 25, 32, 40, 49, 75, 99, and $139^{\circ} \mathrm{C}$ (see tab. 1)
$c_{k}(I-I I) \simeq 3.1, c_{k}(I I-I I I) \simeq 10 \mathrm{~mol} \cdot 1^{-1}$. - a) Region I. - b) Region I, II, and III.
TABLE 1

Isothermes of carbondioxide ${ }^{5}$ analysed by the use of eq. (1) to (3) - all values in at a mol/l respectively.									
Temp. [${ }^{\circ} \mathrm{C}$]							$\begin{aligned} & \mathrm{F}_{\mathrm{c}} \\ & \mathrm{p}^{*} \end{aligned}$	region c III $p_{\max }^{c)}$	$\begin{aligned} & r^{a)} \\ & N^{b)} \end{aligned}$
0	$\begin{gathered} 40.9 \\ 1.66 \end{gathered}$	$\begin{gathered} 0.999 \\ 9 \end{gathered}$						33.4	
25.070 and	63.4	0.999	973	4.94	0.999		0.390	-3.09	0.999377
25.053	2.45	10		-3.42	7		-37.8	865	16
29.900 and	68.7	0.999	977	5.44	0.999		0.366	-2.42	0.999234
29.929	2.63	9		-3.50	6		-47.5	927	7
31.013 and	70.0	0.999	980	8.02	0.999		0.360	-2.26	0.999316
31.037	2.68	10		-3.05	6		-49.2	942	7
32.054 and	71.2	0.999	981	15.3	0.999		0.355	-2.14	0.999378
32.075	2.71	10		-1.79	6		-51.0	955	7
40.085 and	80.6	0.999	986	11.4	0.999	389	0.371	-2.40	0.999187
40.105	3.02	10		-3.07	16		-81.3	1057	13
49.712	93.6	0.999	992	25.8	0.999	967	0.321	-1.12	0.999520
	3.43	10		-1.66	9		-94.8	1698	14

$$
\begin{gathered}
0.999998 \\
10 \\
0.9999995 \\
10 \\
0.9999999 \\
10 \\
0.9999999 \\
10 \\
0.9999999 \\
10
\end{gathered}
$$

$$
\begin{array}{r}
0.258 \\
-119.2 \\
0.225 \\
-131.5 \\
0.205 \\
-141.1 \\
0.141 \\
-69.8 \\
0.146 \\
-80.0 \\
0.191 \\
-146.2
\end{array}
$$

75.260
99.767
125.007
139.832
145.049
150.140

$$
\begin{aligned}
& 0.694 \\
& 2072 \\
& 1.714 \\
& 2420 \\
& 2.38 \\
& 2772 \\
& 3.76 \\
& 459 \\
& \\
& 3.69 \\
& 478 \\
& 2.87 \\
& 3117
\end{aligned}
$$

[^0] 0.999939
$13{ }^{9.999932} 14^{9}$
0.999938
$14{ }^{9} 9$
0.999912
10
0.999956
9
0.999947
14

0.181
-84.6
0.161
-90.2
0.144
-91.5
0.121
-82.9
0.124
-87.9
0.111
-61.7
0.106
-39.2

$\begin{array}{llllll}\infty & 0 & 0 & \text { N } \\ & \text { N } & 0 & n \\ 1\end{array}$

Temp. [${ }^{\circ} \mathrm{C}$]	$\begin{array}{ll} \text { region I } & { }^{\text {r) }} \\ \mathrm{F}_{\mathrm{p}} & \left.\mathrm{r}^{(}\right) \\ \mathrm{c}^{\star} & N^{2} \end{array}$			$\begin{array}{ll} \text { region II } & \\ \mathrm{F}_{\mathrm{p}} & \mathrm{r}^{\mathrm{a}} \\ \mathrm{c}^{\star} & \mathrm{N}^{b} \end{array}$			$\begin{aligned} & \mathrm{F}_{\mathrm{c}} \\ & \mathrm{p}^{*} \end{aligned}$	$\begin{gathered} \text { region } \\ \mathrm{c}_{\mathrm{C}} \text { III } \\ \left.\mathrm{p}_{\max } \mathrm{c}\right) \end{gathered}$	$\begin{aligned} & r^{a)} \\ & N^{b} \end{aligned}$
100	$\begin{array}{r} 15700 \\ 500 \end{array}$	$\begin{array}{r} 0.999 \\ 9 \end{array}$		$\begin{gathered} 4020 \\ 94 \end{gathered}$	$\begin{array}{r} 0.999 \\ 3 \end{array}$		$\begin{aligned} & 0.103 \\ & -16.8 \end{aligned}$	$\begin{aligned} & 4.75 \\ & 2500 \end{aligned}$	$\begin{gathered} 0.999963 \\ 18 \end{gathered}$
125	$\begin{array}{r} 28700 \\ 839 \end{array}$	$\begin{array}{r} 0.999 \\ 9 \end{array}$		$\begin{array}{r} 4690 \\ 100 \end{array}$	$\begin{array}{r} 0.999 \\ 4 \end{array}$		$\begin{gathered} 0.0985 \\ 9.45 \end{gathered}$	$\begin{aligned} & 4.96 \\ & 2000 \end{aligned}$	$\begin{gathered} 0.999981 \\ 15 \end{gathered}$
150	$\begin{array}{r} 30800 \\ 839 \end{array}$	$\begin{array}{r} 0.999 \\ 9 \end{array}$		$\begin{array}{r} 5470 \\ 110 \end{array}$	$\begin{array}{r} 0.999 \end{array}$		$\begin{gathered} 0.0958 \\ 34.8 \end{gathered}$	$\begin{aligned} & 5124 \\ & 2150 \end{aligned}$	$\begin{gathered} 0.999986 \\ 15 \end{gathered}$

[^1]
TABLE 3

Isothermes of helium ${ }^{9}$ analysed by use of eq. (1) - all values in at and mol/l, respectively.

Temp. [K]	F_{p}	c*	$r^{\text {a) }}$	$N^{\text {b) }}$	$\mathrm{p}_{\max }{ }^{\text {c }}$
2.610	0.623	2.87	0.999991	18	0.116
3.105	0.862	3.34	0.999999	6	0.245
3.721	1.113	3.51	0.999984	8	0.548
4.245	1.328	3.56	0.999916	19	0.954

a) Correlation factor obtained by the use of eq. (1). - b) Number of points. - c) Maximum pressure.
is sufficiently accurate for most applications. If even higher precision is required, the proportionality of the parameters with a power of the absolute temperature T can be used. This is explicitely done for CO_{2} in region I, where the parameters can be determined with high precision. The temperature dependence is given by eq. (3) and (4). The constants F

$$
\begin{align*}
& \mathrm{F}_{\mathrm{p}}=\mathrm{a}_{\mathrm{F}} \cdot \mathrm{~T}^{\alpha F} \tag{3}\\
& \mathrm{c}^{\star}=\mathrm{a}_{\mathrm{c}} \cdot \mathrm{~T}^{\alpha c} \tag{4}
\end{align*}
$$

and αc are obtained by plots of $\ln F_{p}$ vers. $\ln T$ and
$\ln C^{\star}$ vers. $\ln T$. Plots of F_{p} vers. $T^{\alpha F}$ and c^{\star} vers. $T^{\alpha C}$ are given by fig. 3. Straight lines are obtained with correlation factors $r=0.9997$ and $r=0.9995$ (13 points). The intercepts are very small and can be omitted in most cases. The temperature dependence of the parameters in region II and III can be described in the same manner as in region I with the same type of equations as (3) or (4).

DETERMINATION OF CRITICAL CONCENTRATIONS c_{k}
The determination of $c_{k}(I-I I)$ and c_{k} (II-III) is important for the practical use of eq. (1) and (2). The clue for the determination of c_{k} is the fact that the correlation according to either eq. (1) or (2) rapidly turns bad when a c_{k} value is exceeded. This is shown in fig. 4 where the correlation factor is plotted vers. the highest concentration which is taken into account. The point of inflection in fig. 4 gives a c_{k} (I-II) value of 3.1 mol. 1^{-1}. The c_{k} (II-III) can be obtained in the same manner starting with the highest concentration and going stepwise to lower concentrations. The so obtained c_{k} values can be verified by the analogous use of region II.

The point of inflection is more pronounced at
lower temperatures, but can easily be localized even at high temperatures. Measurements with lower accuracy give the same type of plot as fig. 4.

FIG. 3: Temperature dependence of the parameters F_{p} and c^{*} of carbon dioxide, region I. - a) Plot of F_{p} vers. $\mathrm{T}^{4.73}\left(\mathrm{a}_{\mathrm{F}}=1.230 \cdot 10^{-10}\right.$, intercept: 0.049 at$) \mathrm{C}^{\mathrm{C}}$ -
b) Plot of c^{\star} vers. $T^{3.913}\left(a_{c}=5.049 \cdot 10^{-10 \text {, }}\right.$ intercept: $0.036 \mathrm{~mol} \cdot \mathrm{l}^{-1}$).

FIG. 4: Correlation factor as a function of the highest concentration in the plot of p vers. $\ln \left(c / c^{*}+1\right)$ for region I of carbondioxide at 40.105 and $40.085^{\circ} \mathrm{C}^{5}$.

USE OF THE EQUATIONS FOR ANALYSIS
For the calculation of the concentrations eq. (1)
and (2) should be transformed to eq. (5) to (7) which

$$
\begin{array}{ll}
c=c^{*} \cdot \exp \left(p / F_{p}\right)-c^{*} & \text { (5) Region } I \\
c=c^{*} \cdot \exp \left(\frac{p-p^{\prime}}{F_{p}}\right)-c^{*} & \text { (6) Region II } \\
c=\left(\ln \left(p+p^{*}\right)-c^{0}\right) / F_{c} & \text { (7) Region III }
\end{array}
$$

directly give the concentration c. When a concentration is to be calculated one has to check to which region the pressure measurement corresponds. Then the parameters of the equations are taken from table 1 to 3 , for other temperatures interpolated as described, or calculated by use of eq. (3) and (4). With a linear interpolation a sufficient accuracy in most cases is obtained. For other gases the parameters of eq. (1) and (2) can be calculated in the described manner.

EXPERIMENTAL EXAMPLE

The concentration of carbondioxide is to be determined to a given pressure ${ }^{5}$ of 46.324 at $75.260^{\circ} \mathrm{C}$. The pressure corresponds to region I. The parameters $F_{p}=133.4$ at and $c^{\star}=4.59 \mathrm{~mol} \cdot 1^{-1}$ for this temperature are taken from Table l. By use of eq. (5) a concentration c of 1.9569 wol $\cdot 1^{-1}$ is calculated, whereas the experimental concentration is $1.9567 \mathrm{~mol} \cdot \mathrm{l}^{-1}$. The error is 10 ppm . The molar concentration can be transferred into density or molar volume in known manner.

ACKNOWLEDGEMENT

This work was supported by Deutsche Forschungsgemeinschaft.

REFERENCES

1. G.C.Maitland, M.Rigby, E.B.Smith, and W.A.Wakeham, Intermolecular Forces, 1.edition, Clarendon Press, Oxford 1981.
2. J.O.Hirschfelder, C.F.Curtis und R.B.Bird, Molecular Theory of Gases and Liquids, 2.edition, John Wiley \& Sons, New York 1964.
3. G.Kortüm, Einführung in die Chemische Thermodynamik, 6.edition, Verlag Chemie GmbH, Weinheim 1972.
4. J.Otto in Landolt - Börnstein Zahlenwerte und Funktionen aus Physik Chemie Astronomie Geophysik Technik; 1.edition, vol. II/1, p. 298, Springer Verlag, Heidelberg 1971.
5a. A.Michels and C.Michels, Proc.Roy.Soc.London,Ser. A, 153 (1935) 201.
5b. A.Michels, C.Michels, and H.Wouters, Proc.Roy.Soc. London, Ser.A, 153 (1935) 214.
5c. A.Michels, B.Blaisse, and C.Michels, Proc.Roy.Soc. London, Ser.A, 160 (1937) 358.
6a. A.Michels, J.M.Levelt, and G.J.Wolkers, Physica 24 (1958)769.
6b. A.Michels, J.M.Levelt, and W.de Graaff, Physica 24, 659 (1958).
6c. A.Michels, H.Wijker, and H.K.Wijker, Physica 15 (1949) 627.
6d. A.Michels, R.J.Lunbeck, and G.J. Wolkers, Appl. Scient.Res.A 2 (1951) 345.
7a. W.H.Keesom and H.K.Kraak, Physica 2 (1935) 37.
7b. W.H.Keesom and W.K.Walstra, Physica 7 (1940) 985.

Received June 30, 1987
Accepted July 21, 1987

[^0]: a) Correlation factor obtained by use of the corresponding equation. - b) Number of points. -
 a) Correlation factor obtained by use of the corresponding equation. - b) Number of points. c) Maximum pressure.

[^1]: a) Correlation factor obtained by use of the corresponding equation. - b) Number of points. -
 c) Maximum pressure. - d) The measurements near by the region with two phases give larger deviations and are therefore amitted - there are only few measurements in region II and so the calculated parameters have larger uncertainties.

