28 research outputs found

    Cyclodextrin/poly(anhydride) nanoparticles as drug carriers for the oral delivery of atovaquone.

    Get PDF
    The aim was to study the ability of bioadhesive cyclodextrin-poly(anhydride) nanoparticles as carriers for the oral delivery of atovaquone (ATO). In order to increase the loading capacity of ATO by poly(anhydride) nanoparticles, the following oligosaccharides were assayed: 2-hydroxypropyl-β-cyclodextrin (HPCD), 2,6-di-O-methyl-β-cyclodextrin (DCMD), randomly methylated-β-cyclodextrin (RMCD) and sulfobuthyl ether-β-cyclodextrin (SBECD). Nanoparticles were obtained by desolvation after the incubation between the poly(anhydride) with the ATO-cyclodextrin complexes. For the pharmacokinetic studies, ATO formulations were administered orally in rats. Overall, ATO displayed a higher affinity for methylated cyclodextrins than for the other derivatives. However, for in vivo studies, both ATO-DMCD-NP and ATO-HPCD-NP were chosen. These nanoparticle formulations showed more adequate physicochemical properties in terms of size (75%). In vivo, nanoparticle formulations induced higher and more prolonged plasmatic levels of atovaquone than control suspensions of the drug in methylcellulose. Relative bioavailability of ATO when loaded in nanoparticles ranged from 52% (for ATO-HPCD NP) to 71% (for ATO-DMCD NP), whereas for the suspension control formulation the bioavailability was only about 30%. The encapsulation of atovaquone in cyclodextrins-poly(anhydride) nanoparticles seems to be an interesting strategy to improve the oral bioavailability of this lipophilic drug

    Stabilized micelles as delivery vehicles for paclitaxel

    Get PDF
    Paclitaxel is an antineoplastic drug used against a variety of tumors, but its low aqueous solubility and active removal caused by P-glycoprotein in the intestinal cells hinder its oral administration. In our study, new type of stabilized Pluronic micelles were developed and evaluated as carriers for paclitaxel delivery via oral or intravenous route. The pre-stabilized micelles were loaded with paclitaxel by simple solvent/evaporation technique achieving high encapsulation efficiency of approximately 70%. Gastrointestinal transit of the developed micelles was evaluated by oral administration of rhodamine-labeled micelles in rats. Our results showed prolonged gastrointestinal residence of the marker encapsulated into micelles, compared to a solution containing free marker. Further, the oral administration of micelles in mice showed high area under curve of micellar paclitaxel (similar to the area of i.v. Taxol®), longer mean residence time (9-times longer than i.v. Taxol®) and high distribution volume (2-fold higher than i.v. Taxol®) indicating an efficient oral absorption of paclitaxel delivered by micelles. Intravenous administration of micelles also showed a significant improvement of pharmacokinetic parameters of micellar paclitaxel vs. Taxol®, in particular higher area under curve (1.2-fold), 5-times longer mean residence time and lower clearance, indicating longer systemic circulation of the micelles

    Molecular buckets: cyclodextrins for oral cancer therapy

    Get PDF
    The oral route is preferred by patients for drug administration due to its convenience, resulting in improved compliance. Unfortunately, for a number of drugs (e.g., anticancer drugs), this route of administration remains a challenge. Oral chemotherapy may be an attractive option and especially appropriate for chronic treatment of cancer. However, this route of administration is particularly complicated for the administration of anticancer drugs ascribed to Class IV of the Biopharmaceutical Classification System. This group of compounds is characterized by low aqueous solubility and low intestinal permeability. This review focuses on the use of cyclodextrins alone or in combination with bioadhesive nanoparticles for oral delivery of drugs. The state-of-the-art technology and challenges in this area is also discussed

    Oral administration of paclitaxel with pegylated poly(anhydride) nanoparticles: permeability and pharmacokinetic study

    Get PDF
    The aim of this work was to study the potential of pegylated poly(anhydride) nanoparticles as carriers for the oral delivery of paclitaxel (PTX). Paclitaxel is an anticancer drug, ascribed to the class IV of the Biopharmaceutical Classification system, characterised for its low aqueous solubility and to act as a substrate of the P-glycoprotein and cytochrome P450. For the pegylation of nanoparticles, three different poly(ethylene glycol) (PEG) were used: PEG 2000 (PTX-NP2), PEG 6000 (PTX-NP6) and PEG 10,000 (PTX-NP10). The transport and permeability of paclitaxel through the jejunum mucosa of rats was determined in Ussing chambers, whereas its oral bioavailability was studied in rats. The loading of PTX in pegylated nanoparticles increased between 3 and 7 times the intestinal permeability of paclitaxel through the jejunum compared with the commercial formulation Taxol. Interestingly, the permeability of PTX was significantly higher for PTX-NP2 and PTX-NP6 than for PTX-NP10. In the in vivo studies, similar results were obtained. When PTX-NP2 and PTX-NP6 were administered to rats by the oral route, sustained and therapeutic plasma levels of paclitaxel for at least 48 h were observed. The relative oral bioavailability of paclitaxel delivered in nanoparticles was calculated to be 70% for PTX-NP2, 40% for PTX-NP6 and 16% in case of PTX-NP10. All of these observations would be related with both the bioadhesive properties of these carriers and the inhibitory effect of PEG on the activity of both P-gp and P450 cytochrome

    Casein nanoparticles as carriers for the oral delivery of folic acid

    Get PDF
    Alimentary proteins can be viewed as an adequate material for the preparation of nanoparticles and microparticles. They offer several advantages such as their digestibility, price and a good capability to interact with a wide variety of compounds and nutrients. The aim of this work was to prepare and characterize casein nanoparticles for the oral delivery of folic acid. These nanoparticles were prepared by a coacervation process, stabilized with either lysine or arginine and, finally, dried by spray‐drying. For some batches, the effect of a supplementary treatment of nanoparticles (before drying) with hydrodynamic high pressure on the properties of the resulting carriers was also evaluated. The resulting nanoparticles displayed a mean size close to 150 nm and a folic acid content of around 25 mg per mg nanoparticle. From the in vitro release studies, it was observed that casein nanoparticles acted as gastro‐resistant devices and, thus, folic acid was only released under simulated intestinal conditions. For the pharmacokinetic study, folic acid was orally administered to laboratory animals as a single dose of 1 mg/kg. Animals treated with folic acidloaded casein nanoparticles displayed significantly higher serum levels than those observed in animals receiving an aqueous solution of the vitamin. As a consequence the oral bioavailability of folic acid when administered in casein nanoparticles was calculated to be around 52%, a 50% higher than with the traditional aqueous solution. Unfortunately, the treatment of casein nanoparticles by hydrodynamic high pressure modified neither the release profile of the vitamin nor its oral bioavailability

    Nanoparticules muco-pénétrantes: véhicules pour l’administration orale du paclitaxel

    Get PDF
    Paclitaxel is an anticancer drug used as solution for perfusion for the treatment of certain types of cancers. In the last years, a number of strategies have been proposed for the development of an oral formulation of this drug. However, this task is quite complicated due to the poor aqueous solubility of paclitaxel as well as the fact that this compound is substrate of the intestinal P-glycoprotein and the cytochrome P450 enzymatic complex. In this work, we have developed pegylated nanoparticles with mucopenetrating properties in order to conduct paclitaxel onto the surface of the enterocyte. These nanoparticles displayed a size of about 180 nm and a drug loading close to 15% by weight. The pharmacokinetic study in mice has shown that these nanoparticles were capable to offer therapeutic plasma levels of paclitaxel up to 72 hours. In addition, the oral relative bioavailability of paclitaxel when loaded in nanoparticles pegylated with poly(ethylene glycol) 2000 (PEG) was found to be 85%. In a subcutaneous model of tumour in mice, these pegylated nanoparticles administered orally every 3 days have demonstrated a similar efficacy than Taxol® administered intravenously every day during 9 days. All of these results suggested that these pegylated nanoparticles were capable to cross the mucus layer of the gut and, then, reach the surface of the enterocytes. The PEG molecules would facilitate the adhesion of nanoparticles to this epithelial surface, minimise the pre-systemic metabolism of paclitaxel and, thus, promote its absorption

    Optimization of maghemite-loaded PLGA nanospheres for biomedical applications

    Get PDF
    Magnetic nanoparticles have been proposed as interesting tools for biomedical purposes. One of their promising utilization is the MRI in which magnetic substances like maghemite are used in a nanometric size and encapsulated within locally biodegradable nanoparticles. In this work, maghemite has been obtained by a modified sol-gel method and encapsulated in polymer-based nanospheres. The nanospheres have been prepared by single emulsion evaporation method. The different parameters influencing the size, polydispersity index and zeta potential surface of nanospheres were investigated. The size of nanospheres was found to increase as the concentration of PLGA increases, but lower sizes were obtained for 3 min of sonication time and surfactant concentration of 1%. Zeta potential response of magnetic nanospheres towards pH variation was similar to that of maghemite-free nanospheres confirming the encapsulation of maghemite within PLGA nanospheres. The maghemite entrapment efficiency and maghemite content for nanospheres are 12% and 0.59% w/w respectively
    corecore