257 research outputs found

    Generative discriminative models for multivariate inference and statistical mapping in medical imaging

    Full text link
    This paper presents a general framework for obtaining interpretable multivariate discriminative models that allow efficient statistical inference for neuroimage analysis. The framework, termed generative discriminative machine (GDM), augments discriminative models with a generative regularization term. We demonstrate that the proposed formulation can be optimized in closed form and in dual space, allowing efficient computation for high dimensional neuroimaging datasets. Furthermore, we provide an analytic estimation of the null distribution of the model parameters, which enables efficient statistical inference and p-value computation without the need for permutation testing. We compared the proposed method with both purely generative and discriminative learning methods in two large structural magnetic resonance imaging (sMRI) datasets of Alzheimer's disease (AD) (n=415) and Schizophrenia (n=853). Using the AD dataset, we demonstrated the ability of GDM to robustly handle confounding variations. Using Schizophrenia dataset, we demonstrated the ability of GDM to handle multi-site studies. Taken together, the results underline the potential of the proposed approach for neuroimaging analyses.Comment: To appear in MICCAI 2018 proceeding

    Modeling domestic pancake cooking incorporating the rheological properties of the batter. Application to seven batter recipes

    Get PDF
    A 2D axisymmetric model for coupled transient heat and mass transfer was developed to simulate pancake cooking on a domestic induction hob. Unlike previous models, the current model considers a variable thermal contact conductance resulting from the crust formation at the bottom of the batter. It aims to take into account the heat transfer phenomena between the pan surface and the batter influenced by the physicochemical changes that the batter undergoes during the cooking process. To quantify the variation of the heat flow that this change in the structure of the batter involves, a normalized relationship between batter viscosity and the temperature was introduced in the model. The performance of seven cereal and legume flour-based batters was evaluated in an experimental setup. The proposed model is capable of adequately predicting the weight loss and the average surface temperature of the batter using parameters related with the rheological properties of the batter and its composition

    Color changes in beef meat during pan cooking: kinetics, modeling and application to predict turn over time

    Get PDF
    The kinetics of heat-induced color changes in beef meat was determined and implemented in a numerical model for doublesided pan cooking of steak. The CIELab color space was used to obtain the lightness (coordinate L∗ ) and the reddish tone (coordinate a∗ ) of the cooked meat. L∗ was the CIELab coordinate that contributed the most to the change in the absolute color. Two response surfaces were found to describe the evolution with time and temperature of both color coordinates, L∗ and a∗ . The model results were successfully verified with experimental data of the two coordinates along the thickness of the meat for three degrees of cooking. The Root-Mean-Squared Errors (RMSE) for coordinate L∗ were 5.17 (very rare), 2.02 (medium rare) and 3.83 (done), and for coordinate a∗ 1.44 (very rare), 1.26 (medium rare) and 0.89 (done). The applicability of the model for practical cooking purposes was illustrated by determining the optimum turn over time to achieve a similar color profile on both sides of the meat. The turn over time depended on the desired degrees of cooking, and were comprised between one-half and two-thirds of the final cooking time, increasing from very rare cooking degree to done cooking degree

    Towards domestic cooking efficiency: A case study on burger pan frying using experimental and computational results

    Get PDF
    It is well known that the use of efficient domestic cooking appliances and equipment can not only save energy, but also improve the quality of the food being prepared. This work raises the question of whether cooking procedures can also contribute to this energy efficiency. Focusing on burger pan frying, experimental data were used to develop a model able to predict cooking outcomes under different power levels supplied by an induction hob. The proposed model takes into account not only the heat consumed by water evaporation in the contact region but also the shrinkage process of the hamburger. A new formulation based on the multiplicative decomposition of the strain deformation gradient is proposed to describe the observed decoupling between weight and volume loss during the process. The model properly predicts temperature, moisture loss and shrinkage, and allows elucidation of the effects of supplying different amounts of energy on the final water content

    The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures

    Get PDF
    Motivation: Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. Methods: We compare 32 feature selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. Results: We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Simple filter methods generally outperform more complex embedded or wrapper methods, and ensemble feature selection has generally no positive effect. Overall a simple Student's t-test seems to provide the best results. Availability: Code and data are publicly available at http://cbio.ensmp.fr/~ahaury/

    Effect of the Consumption of Alcohol-Free Beers with Different Carbohydrate Composition on Postprandial Metabolic Response; 35268021

    Get PDF
    Background: We investigated the postprandial effects of an alcohol-free beer with modified carbohydrate (CH) composition compared to regular alcohol-free beer. Methods: Two randomized crossover studies were conducted. In the first study, 10 healthy volunteers received 25 g of CH in four different periods, coming from regular alcohol-free beer (RB), alcohol-free beer enriched with isomaltulose and a resistant maltodextrin (IMB), alcohol-free beer enriched with resistant maltodextrin (MB), and a glucose-based beverage. In the second study, 20 healthy volunteers were provided with 50 g of CH from white bread (WB) plus water, or with 14.3 g of CH coming from RB, IMB, MB, and extra WB. Blood was sampled after ingestion every 15 min for 2 h. Glucose, insulin, incretin hormones, TG, and NEFAs were determined in all samples. Results: The increase in glucose, insulin, and incretin hormones after the consumption of IMB and MB was significantly lower than after RB. The consumption of WB with IMB and MB showed significantly less increase in glucose levels than WB with water or WB with RB. Conclusions: The consumption of an alcohol-free beer with modified CH composition led to a better postprandial response compared to a conventional alcohol-free beer. © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of 2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    iNaturalist: aplicaciones, oportunidades y aspectos a tener en cuenta en cuanto a su uso en botánica

    Get PDF
    Comunicación oral presentada en el XI Congreso de Biología de la Conservación de Plantas (SEBiCoP) celebrado del 17 al 21 de julio de 202

    DNA Copy Number Changes in Human Malignant Fibrous Histiocytomas by Array Comparative Genomic Hybridisation

    Get PDF
    BACKGROUND: Malignant fibrous histiocytomas (MFHs), or undifferentiated pleomorphic sarcomas, are in general high-grade tumours with extensive chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, as well as novel gene targets of potential importance for MFH development and/or progression, we have analysed DNA copy number changes in 33 MFHs using microarray-based comparative genomic hybridisation (array CGH). PRINCIPAL FINDINGS: In general, the tumours showed numerous gains and losses of large chromosomal regions. The most frequent minimal recurrent regions of gain were 1p33-p32.3, 1p31.3-p31.2 and 1p21.3 (all gained in 58% of the samples), as well as 1q21.2-q21.3 and 20q13.2 (both 55%). The most frequent minimal recurrent regions of loss were 10q25.3-q26.11, 13q13.3-q14.2 and 13q14.3-q21.1 (all lost in 64% of the samples), as well as 2q36.3-q37.2 (61%), 1q41 (55%) and 16q12.1-q12.2 (52%). Statistical analyses revealed that gain of 1p33-p32.3 and 1p21.3 was significantly associated with better patient survival (P = 0.021 and 0.046, respectively). Comparison with similar array CGH data from 44 leiomyosarcomas identified seven chromosomal regions; 1p36.32-p35.2, 1p21.3-p21.1, 1q32.1-q42.13, 2q14.1-q22.2, 4q33-q34.3, 6p25.1-p21.32 and 7p22.3-p13, which were significantly different in copy number between the MFHs and leiomyosarcomas. CONCLUSIONS: A number of recurrent regions of gain and loss have been identified, some of which were associated with better patient survival. Several specific chromosomal regions with significant differences in copy number between MFHs and leiomyosarcomas were identified, and these aberrations may be used as additional tools for the differential diagnosis of MFHs and leiomyosarcomas
    corecore