1,897 research outputs found

    Investigations of meltwater refreezing and density variations in the snowpack and firn within the percolation zone of the Greenland Ice Sheet

    Get PDF
    The mass balance of polythermal ice masses is critically dependent on the proportion of surface-generated meltwater that subsequently refreezes in the snowpack and firn. In order to quantify this effect and to characterize its spatial variability, we measured near-surface (26%, resulting in a 32% increase in net accumulation. This 'seasonal densification' increased at lower elevations, rising to 47% 10 km closer to the ice-sheet margin at 1860 m a. s. l. Density/depth profiles from nine sites within 1 km2 at ∼1945 m a.s.l. reveal complex stratigraphies that change over short spatial scales and seasonally. We conclude that estimates of mass-balance change cannot be calculated solely from observed changes in surface elevation, but that near-surface densification must also be considered. However, predicting spatial and temporal variations in densification may not be straightforward. Further, the development of complex firn-density profiles both masks discernible annual layers in the near-surface firn and ice stratigraphy and is likely to introduce error into radar-derived estimates of surface elevation

    Microspectroscopy and Imaging in the THz Range Using Coherent CW Radiation

    Get PDF
    A novel THz near-field spectrometer is presented which allows to perform biological and medical studies with high spectral resolution combined with a spatial resolution down to l/100. In the setup an aperture much smaller than the used wavelength is placed in the beam very close to the sample. The sample is probed by the evanescent wave behind the aperture. The distance is measured extremely accurate by a confocal microscope. We use monochromatic sources which provide powerful coherent cw radiation tuneable from 50 GHz up to 1.5 THz. Transmission and reflection experiments can be performed which enable us to study solids and molecules in aqueous solution. Examples for spectroscopic investigations on biological tissues are presented.Comment: 4 pages, 5 figures, email: [email protected]

    Shear band dynamics from a mesoscopic modeling of plasticity

    Full text link
    The ubiquitous appearance of regions of localized deformation (shear bands) in different kinds of disordered materials under shear is studied in the context of a mesoscopic model of plasticity. The model may or may not include relaxational (aging) effects. In the absence of relaxational effects the model displays a monotonously increasing dependence of stress on strain-rate, and stationary shear bands do not occur. However, in start up experiments transient (although long lived) shear bands occur, that widen without bound in time. I investigate this transient effect in detail, reproducing and explaining a t^1/2 law for the thickness increase of the shear band that has been obtained in atomistic numerical simulations. Relaxation produces a negative sloped region in the stress vs. strain-rate curve that stabilizes the formation of shear bands of a well defined width, which is a function of strain-rate. Simulations at very low strain-rates reveal a non-trivial stick-slip dynamics of very thin shear bands that has relevance in the study of seismic phenomena. In addition, other non-stationary processes, such as stop-and-go, or strain-rate inversion situations display a phenomenology that matches very well the results of recent experimental studies.Comment: 10 pages, 10 figure

    Quantitative monitoring of surface movements on active landslides by multi-temporal, high-resolution X-Band SAR amplitude information: Preliminary results

    Get PDF
    Multi-temporal image cross-correlation is a method for tracking moving features and can there-fore be used for quantitative assessments of surface displacements. Accuracies of up to 1/8th of the original image geometric resolution can be achieved. We present the results of an analysis car- ried out on Corvara landslide located in the Italian Dolomites. Image offset-tracking was applied to CosmoSky-Med amplitude images acquired between October 2013 and August 2015. The presence of a validation dataset consisting of periodical GPS surveys carried out on 16 benchmarks represents an ideal opportunity to test the applicability of SAR-based image cross-correlation for landslide moni- toring. Despite the relative low accuracy of the results amplitude-based offset-tracking proved to be beneficial due to the ability of this method to capture large displacements. In particular the results evidence its complementarity with respect to multi-temporal interferometry that is confined to slow displacements along E-W directions

    Genetic variation of Pyrenophora teres f. teres isolates in Western Australia and emergence of a Cyp51A fungicide resistance mutation

    Get PDF
    Plant Pathology published by John Wiley & Sons Ltd on behalf of British Society for Plant Pathology. Genome-wide, unlinked, simple sequence repeat markers were used to examine genetic variation and relationships within Pyrenophora teres f. teres, a common pathogen of barley, in Western Australia. Despite the region's geographic isolation, the isolates showed relatively high allelic variation compared to similar studies, averaging 7.11 alleles per locus. Principal component, Bayesian clustering and distance differentiation parameters provided evidence for both regional genotypic subdivision together with juxtaposing of isolates possessing different genetic backgrounds. Genotyping of fungicide resistant Cyp51A isolates indicated a single mutation event occurred followed by recombination and long-distance regional dispersal over hundreds of kilometres. Selection of recently emergent favourable alleles such as the Cyp51A mutation and a cultivar virulence may provide an explanation, at least in part, for juxtaposed genotypes. Factors affecting genotypic composition and the movement of new genotypes are discussed in the context of grower practices and pathogen epidemiology, together with the implications for resistance breeding

    Nonperturbative versus perturbative effects in generalized parton distributions

    Get PDF
    Generalized parton distributions (GPDs) are studied at the hadronic (nonperturbative) scale within different assumptions based on a relativistic constituent quark model. In particular, by means of a meson-cloud model we investigate the role of nonperturbative antiquark degrees of freedom and the valence quark contribution. A QCD evolution of the obtained GPDs is used to add perturbative effects and to investigate the GPDs' sensitivity to the nonperturbative ingredients of the calculation at larger (experimental) scale.Comment: 17 pages, 10 figures; submitted to Phys. Rev.

    Radiation hydrodynamics of SN 1987A: I. Global analysis of the light curve for the first 4 months

    Full text link
    The optical/UV light curves of SN 1987A are analyzed with the multi-energy group radiation hydrodynamics code STELLA. The calculated monochromatic and bolometric light curves are compared with observations shortly after shock breakout, during the early plateau, through the broad second maximum, and during the earliest phase of the radioactive tail. We have concentrated on a progenitor model calculated by Nomoto & Hashimoto and Saio, Nomoto, & Kato, which assumes that 14 solar masses of the stellar mass is ejected. Using this model, we have updated constraints on the explosion energy and the extent of mixing in the ejecta. In particular, we determine the most likely range of E/M (explosion energy over ejecta mass) and R_0 (radius of the progenitor). In general, our best models have energies in the range E = (1.1 +/- 0.3) x 10^{51} ergs, and the agreement is better than in earlier, flux-limited diffusion calculations for the same explosion energy. Our modeled B and V fluxes compare well with observations, while the flux in U undershoots after about 10 days by a factor of a few, presumably due to NLTE and line transfer effects. We also compare our results with IUE observations, and a very good quantitative agreement is found for the first days, and for one IUE band (2500-3000 A) as long as for 3 months. We point out that the V flux estimated by McNaught & Zoltowski should probably be revised to a lower value.Comment: 27 pages AASTeX v.4.0 + 35 postscript figures. ApJ, accepte

    High efficacy and low toxicity of weekly docetaxel given as first-line treatment for metastatic breast cancer

    Get PDF
    Background: Docetaxel is one of the most effective antitumor agents currently available for the treatment of metastatic breast cancer (MBC). This phase II multicenter study prospectively analyzed the efficacy and toxicity of docetaxel given on a weekly schedule as first-line treatment of metastatic breast cancer. Patients and Methods: All patients received docetaxel, 35 mg/m(2) weekly for 6 weeks, followed by 2 weeks of rest. Subsequent cycles ( 3 weeks of treatment, 2 weeks of rest) were given until a maximum of 5 cycles or disease progression. Premedication consisted of 8 mg dexamethasone intravenously 30 min prior to the infusion of docetaxel. Results: Fifty-four patients at a median age of 58 years with previously untreated MBC were included in the study. A median of 10 doses ( median cumulative dose 339 mg/m(2)) was administered ( range: 2 - 18). The overall response rate was 48.1% ( 95% CI: 34 - 61%, intent-to-treat). Median survival was 15.8 months and median time to progression was 5.9 months ( intent-to-treat). Hematological toxicity was mild with absence of neutropenia-related complications. Grade 3 neutropenia was observed in 3.7% of patients and grade 3 and 4 anemia was observed in 5.6 and 1.9% of patients, respectively. Conclusion: The weekly administration of docetaxel is highly efficient and safe as first-line treatment for MBC and may serve as an important treatment option specifically in elderly patients and patients with a reduced performance status. Copyright (C) 2005 S. Karger AG, Basel
    corecore