8,649 research outputs found

    The Role of Probe Attenuation in the Time-Domain Reflectometry Characterization of Dielectrics

    Get PDF
    The influence of the measurement setup on the estimation of dielectric permittivity spectra from time-domain reflectometry (TDR) responses is investigated. The analysis is based on a simplified model of the TDR measurement setup, where an ideal voltage step is applied to an ideal transmission line that models the probe. The main result of this analysis is that the propagation in the probe has an inherent band limiting effect, and the estimation of the high-frequency permittivity parameters is well conditioned only if the wave attenuation for a round trip propagation in the dielectric sample is small. This is a general result, holding for most permittivity model and estimation scheme. It has been verified on real estimation problems by estimating the permittivity of liquid dielectrics and soil samples via an high-order model of the TDR setup and a parametric inversion approac

    Scattering analysis of signal degradation and interferences on long and lossy interconnects

    Get PDF
    A time domain scattering formulation for low-loss nonlinearly loaded multiconductor transmission lines is presented. It is suitable for an efficient and accurate evaluation of crosstalk and field coupling. A simulation of the effects of interference on a long interconnect is give

    Influence of the line characterization on the transient analysis of nonlinearly loaded lossy transmission lines

    Get PDF
    The analysis of nonlinearly terminated lossy transmission lines is addressed in this paper with a modified version of a method belonging to the class of mixed techniques, which characterize the line in the frequency domain and solve the nonlinear problem in the time domain via a convolution operation. This formulation is based on voltage wave variables defined in the load sections. The physical meaning of such quantities helps to explain the transient scattering process in the line and allows us to discover the importance (so far often overlooked) of the reference impedance used to define the scattering parameters. The complexity of the transient impulse responses, the efficiency of the algorithms, and the precision of the results are shown to be substantially conditioned by the choice of the reference impedance. The optimum value of the reference impedance depends on the amount of line losses. We show that a low-loss line can be effectively described if its characteristic impedance or the characteristic impedance of the associated LC line is chosen as the reference impedance. Based on the physical interpretation of our formulation, we are able to validate the numerical results, and to demonstrate that, despite claimed differences or improvements, the formulations of several mixed methods are fundamentally equivalen

    Simulating the assembly of galaxies at redshifts z = 6 - 12

    Full text link
    We use state-of-the-art simulations to explore the physical evolution of galaxies in the first billion years of cosmic time. First, we demonstrate that our model reproduces the basic statistical properties of the observed Lyman-break galaxy (LBG) population at z = 6 - 8, including the evolving ultra-violet (UV) luminosity function (LF), the stellar-mass density (SMD), and the average specific star-formation rates (sSFR) of LBGs with M_{UV} < -18 (AB mag). Encouraged by this success we present predictions for the behaviour of fainter LBGs extending down to M_{UV} <= -15 (as will be probed with the James Webb Space Telescope) and have interrogated our simulations to try to gain insight into the physical drivers of the observed population evolution. We find that mass growth due to star formation in the mass-dominant progenitor builds up about 90% of the total z ~ 6 LBG stellar mass, dominating over the mass contributed by merging throughout this era. Our simulation suggests that the apparent "luminosity evolution" depends on the luminosity range probed: the steady brightening of the bright end of the LF is driven primarily by genuine physical luminosity evolution and arises due to a fairly steady increase in the UV luminosity (and hence star-formation rates) in the most massive LBGs. However, at fainter luminosities the situation is more complex, due in part to the more stochastic star-formation histories of lower-mass objects; at this end, the evolution of the UV LF involves a mix of positive and negative luminosity evolution (as low-mass galaxies temporarily brighten then fade) coupled with both positive and negative density evolution (as new low-mass galaxies form, and other low-mass galaxies are consumed by merging). We also predict the average sSFR of LBGs should rise from sSFR = 4.5 Gyr^-1 at z = 6 to about 11 Gyr^-1 by z = 9.Comment: Accepted for publication in MNRA

    Radiative feedback and cosmic molecular gas: the role of different radiative sources

    Get PDF
    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive population III stars are found to be able to largely ionize H and, subsequently, He and He+^+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of "cosmic fossils" such as low-mass dwarf galaxies, the role of AGNi during reionization, the early formation of extended disks and angular-momentum catastrophe.Comment: 19 pages on MNRA

    On the thermal dynamic behaviour of the helium-cooled DEMO fusion reactor

    Get PDF
    The EU-DEMO conceptual design is being conducted among research institutions and universities from 26 countries of European Union, Switzerland and Ukraine. Its mission is to realise electricity from nuclear fusion reaction by 2050. As DEMO has been conceived to deliver net electricity to the grid, the choice of the Breeding Blanket (BB) coolant plays a pivotal role in the reactor design having a strong influence on plant operation, safety and maintenance. In particular, due to the pulsed nature of the heat source, the Primary Heat Transfer System (PHTS) becomes a very important actor of the Balance of Plant (BoP) together with the Power Conversion System (PCS). Moreover, aiming to mitigate the potential negative impact of plasma pulsing on BoP equipment, for the DEMO plant is also being investigated a "heat transfer chain" option which envisages an Intermediate Heat Transfer System (IHTS) equipped with an Energy Storage System (ESS) between PHTS and PCS. Within this framework, a preliminary study has been carried out to analyse the thermal dynamic behaviour of the IHTS system for the Helium-Cooled Pebble Bed (HCPB) BB concept during pulse/dwell transition which should be still considered as the normal operating mode of a fusion power plant. Starting from preliminary thermal-hydraulic calculations made in order to size the main BoP components, the global performances of DEMO BoP have been quantitatively assessed focusing the attention on the attitude of the whole IHTS to smooth the sudden power variations which come from the plasma. The paper describes criteria and rationale followed to develop a numerical model which manages to simulate simple transient scenarios of DEMO BoP. Results of numerical simulations are presented and critically discussed in order to point out the main issues that DEMO BoP has to overcome to achieve a viable electricity power output
    corecore