103 research outputs found

    Potent anti-inflammatory effects of an H2 S-releasing naproxen (ATB-346) in a human model of inflammation

    Get PDF
    ATB-346 is a hydrogen sulfide-releasing non-steroidal anti-inflammatory drug (H2 S-NSAID) derived from naproxen, which in preclinical studies has been shown to have markedly reduced gastrointestinal adverse effects. However, its anti-inflammatory properties in humans compared to naproxen are yet to be confirmed. To test this, we used a dermal model of acute inflammation in healthy, human volunteers, triggered by ultraviolet-killed Escherichia coli. This robust model allows quantification of the cardinal signs of inflammation along with cellular and humoral factors accumulating within the inflamed skin. ATB-346 was non-inferior to naproxen in terms of its inhibition of cyclooxygenase activity as well as pain and tenderness. ATB-346 significantly inhibited neutrophil infiltration at the site of inflammation at 4 h, compared to untreated controls. Subjects treated with ATB-346 also experienced significantly reduced pain and tenderness compared to healthy controls. Furthermore, both classical and intermediate monocyte subsets infiltrating the site of inflammation at 48 h expressed significantly lower levels of CD14 compared to untreated controls, demonstrating a shift toward an anti-inflammatory phenotype. Collectively, we have shown for the first time in humans that ATB-346 is potently anti-inflammatory and propose that ATB-346 represents the next generation of H2 S-NSAIDs, as a viable alternative to conventional NSAIDs, with reduced adverse effects profile

    Intravenous Endotoxin Challenge in Healthy Humans: An Experimental Platform to Investigate and Modulate Systemic Inflammation

    Get PDF
    Activation of inflammatory pathways represents a central mechanism in multiple disease states both acute and chronic. Triggered via either pathogen or tissue damage-associated molecular motifs, common biochemical pathways lead to conserved yet variable physiological and immunological alterations. Dissection and delineation of the determinants and mechanisms underlying phenotypic variance in response is expected to yield novel therapeutic advances. Intravenous (IV) administration of endotoxin (gram-negative bacterial lipopolysaccharide), a specific Toll-like receptor 4 agonist, represents an in vivo model of systemic inflammation in man. National Institutes for Health Clinical Center Reference Endotoxin (CCRE, Escherichia coli O:113:H10:K negative) is employed to reliably and reproducibly generate vascular, hematological, endocrine, immunological and organ-specific functional effects that parallel, to varying degrees, those seen in the early stages of pathological states. Alteration of dose (0.06 - 4 ng/kg) and time-scale of exposure (bolus vs. infusion) allows replication of either acute or chronic inflammation and a range of severity to be elicited, with higher doses (2 - 4 ng/kg) frequently being used to create a 'sepsis-like' state. Established and novel medicinal compounds may additionally be administered prior to or post endotoxin exposure to appreciate their effect on the inflammatory cascade. Despite limitations in scope and generalizability, human IV endotoxin challenge offers a unique platform to gain mechanistic insights into inducible physiological responses and inflammatory pathways. Rationally employed it may aid translation of this knowledge into therapeutic innovations

    A Comparison of Human Neutrophils Acquired from Four Experimental Models of Inflammation

    Get PDF
    Defects in neutrophil function have been implicated in a wide spectrum of clinical conditions. Several models are employed to study activated human neutrophils akin to those found at a site of inflammation. These include whole blood (WB) ex vivo stimulation with lipopolysaccharide (LPS) and in vivo techniques: cantharidin blister, skin windows and intra-dermal injection of UV-killed E.coli (UVKEc). Neutrophils obtained from these have never been compared. We compared the activation status of neutrophils from each technique in order to inform the optimal model for use in human studies. Healthy male volunteers were randomised to undergo one of the four techniques (n = 5/group). LPS: WB stimulated with 1ng/ml of LPS for 4 hours. Cantharidin: 12.5μl of 0.1% cantharidin elicited a single blister, aspirated at 24 hours. Skin windows: four 6mm mechanical-suction blisters created, de-roofed and an exudate-collection chamber placed over the windows for 4 hours before aspiration. UVKEc: 1.5 x 107 UVKEc injected intra-dermally. A single 10mm mechanical-suction blister formed and aspirated at 4 hours. Unstimulated WB used as the control. Flow cytometry was used to determine activation status using CD16, CD11b, CD54, CD62L and CD88. Functional status was assessed with a phagocytosis assay. The pattern of neutrophil activation was similar in all models. Neutrophil CD11b was elevated in all models, most markedly in UVKEc (p<0.0001), and CD54 was also elevated but only significant in the LPS model (p = 0.001). CD62L was significantly reduced in all 4 models (p<0.0001) and CD88 was also suppressed in all. There were no changes in CD16 in any model, neither was there any significant difference in the phagocytic capacity of the neutrophils. In summary, there are no significant differences in activation marker expression or phagocytic capacity in the neutrophils obtained from each technique. Therefore we believe whole blood stimulation is the best model in experimentally challenging inpatient populations

    Monocyte dysfunction in decompensated cirrhosis is mediated by the prostaglandin E2-EP4 pathway

    Get PDF
    Background & Aims: Infection is a major problem in advanced liver disease secondary to monocyte dysfunction. Elevated prostaglandin (PG)E2 is a mediator of monocyte dysfunction in cirrhosis; thus, we examined PGE2 signalling in outpatients with ascites and in patients hospitalised with acute decompensation to identify potential therapeutic targets aimed at improving monocyte dysfunction. Methods: Using samples from 11 outpatients with ascites and 28 patients hospitalised with decompensated cirrhosis, we assayed plasma levels of PGE2 and lipopolysaccharide (LPS); performed quantitative real-time PCR on monocytes; and examined peripheral blood monocyte function. We performed western blotting and immunohistochemistry for PG biosynthetic machinery expression in liver tissue. Finally, we investigated the effect of PGE2 antagonists in whole blood using polychromatic flow cytometry and cytokine production. Results: We show that hepatic production of PGE2 via the cyclo-oxygenase 1–microsomal PGE synthase 1 pathway, and circulating monocytes contributes to increased plasma PGE2 in decompensated cirrhosis. Transjugular intrahepatic sampling did not reveal whether hepatic or monocytic production was larger. Blood monocyte numbers increased, whereas individual monocyte function decreased as patients progressed from outpatients with ascites to patients hospitalised with acute decompensation, as assessed by Human Leukocyte Antigen (HLA)–DR isotype expression and tumour necrosis factor alpha and IL6 production. PGE2 mediated this dysfunction via its EP4 receptor. Conclusions: PGE2 mediates monocyte dysfunction in decompensated cirrhosis via its EP4 receptor and dysfunction was worse in hospitalised patients compared with outpatients with ascites. Our study identifies a potential drug target and therapeutic opportunity in these outpatients with ascites to reverse this process to prevent infection and hospital admission. Lay summary: Patients with decompensated cirrhosis (jaundice, fluid build-up, confusion, and vomiting blood) have high infection rates that lead to high mortality rates. A white blood cell subset, monocytes, function poorly in these patients, which is a key factor underlying their sensitivity to infection. We show that monocyte dysfunction in decompensated cirrhosis is mediated by a lipid hormone in the blood, prostaglandin E2, which is present at elevated levels, via its EP4 pathway. This dysfunction worsens when patients are hospitalised with complications of cirrhosis compared with those in the outpatients setting, which supports the EP4 pathway as a potential therapeutic target for patients to prevent infection and hospitalisation

    Fine needle aspirates comprehensively sample intrahepatic immunity.

    Get PDF
    OBJECTIVE: In order to refine new therapeutic strategies in the pipeline for HBV cure, evaluation of virological and immunological changes compartmentalised at the site of infection will be required. We therefore investigated if liver fine needle aspirates (FNAs) could comprehensively sample the local immune landscape in parallel with viable hepatocytes. DESIGN: Matched blood, liver biopsy and FNAs from 28 patients with HBV and 15 without viral infection were analysed using 16-colour multiparameter flow cytometry. RESULTS: The proportion of CD4 T, CD8 T, Mucosal Associated Invariant T cell (MAIT), Natural Killer (NK) and B cells identified by FNA correlated with that in liver biopsies from the same donors. Populations of Programmed Death-1 (PD-1)hiCD39hi tissue-resident memory CD8 T cells (CD69+CD103+) and liver-resident NK cells (CXCR6+T-betloEomeshi), were identified by both FNA and liver biopsy, and not seen in the blood. Crucially, HBV-specific T cells could be identified by FNAs at similar frequencies to biopsies and enriched compared with blood. FNAs could simultaneously identify populations of myeloid cells and live hepatocytes expressing albumin, Scavenger Receptor class B type 1 (SR-B1), Programmed Death-Ligand 1 (PD-L1), whereas hepatocytes were poorly viable after the processing required for liver biopsies. CONCLUSION: We demonstrate for the first time that FNAs identify a range of intrahepatic immune cells including locally resident sentinel HBV-specific T cells and NK cells, together with PD-L1-expressing hepatocytes. In addition, we provide a scoring tool to estimate the extent to which an individual FNA has reliably sampled intrahepatic populations rather than contaminating blood. The broad profiling achieved by this less invasive, rapid technique makes it suitable for longitudinal monitoring of the liver to optimise new therapies for HBV.Wellcome Trust Clinical Research Training Fellowship (107389/Z/15/Z)Barts and The London Charity Project Grant (723/1795)NIHR Research for patient benefit award (PBPG-0614-34087)Medical Research Council grant (G0801213)Wellcome Trust Senior Investigator Award and Enhancement (101849/Z/13/A) to MKM

    Cellular adaptations to hypoxia and acidosis during somatic evolution of breast cancer

    Get PDF
    Conceptual models of carcinogenesis typically consist of an evolutionary sequence of heritable changes in genes controlling proliferation, apoptosis, and senescence. We propose that these steps are necessary but not sufficient to produce invasive breast cancer because intraductal tumour growth is also constrained by hypoxia and acidosis that develop as cells proliferate into the lumen and away from the underlying vessels. This requires evolution of glycolytic and acid-resistant phenotypes that, we hypothesise, is critical for emergence of invasive cancer. Mathematical models demonstrate severe hypoxia and acidosis in regions of intraductal tumours more than 100 m from the basement membrane. Subsequent evolution of glycolytic and acid-resistant phenotypes leads to invasive proliferation. Multicellular spheroids recapitulating ductal carcinoma in situ (DCIS) microenvironmental conditions demonstrate upregulated glucose transporter 1 (GLUT1) as adaptation to hypoxia followed by growth into normoxic regions in qualitative agreement with model predictions. Clinical specimens of DCIS exhibit periluminal distribution of GLUT-1 and Na+/H+ exchanger (NHE) indicating transcriptional activation by hypoxia and clusters of the same phenotype in the peripheral, presumably normoxic regions similar to the pattern predicted by the models and observed in spheroids. Upregulated GLUT-1 and NHE-1 were observed in microinvasive foci and adjacent intraductal cells. Adaptation to hypoxia and acidosis may represent key events in transition from in situ to invasive cancer

    Cancer recurrence times from a branching process model

    Get PDF
    As cancer advances, cells often spread from the primary tumor to other parts of the body and form metastases. This is the main cause of cancer related mortality. Here we investigate a conceptually simple model of metastasis formation where metastatic lesions are initiated at a rate which depends on the size of the primary tumor. The evolution of each metastasis is described as an independent branching process. We assume that the primary tumor is resected at a given size and study the earliest time at which any metastasis reaches a minimal detectable size. The parameters of our model are estimated independently for breast, colorectal, headneck, lung and prostate cancers. We use these estimates to compare predictions from our model with values reported in clinical literature. For some cancer types, we find a remarkably wide range of resection sizes such that metastases are very likely to be present, but none of them are detectable. Our model predicts that only very early resections can prevent recurrence, and that small delays in the time of surgery can significantly increase the recurrence probability.Comment: 26 pages, 9 figures, 4 table

    Treatments for people who use anabolic androgenic steroids: a scoping review.

    Get PDF
    BACKGROUND: A growing body of evidence suggests that anabolic androgenic steroids (AAS) are used globally by a diverse population with varying motivations. Evidence has increased greatly in recent years to support understanding of this form of substance use and the associated health harms, but there remains little evidence regarding interventions to support cessation and treat the consequences of use. In this scoping review, we identify and describe what is known about interventions that aim to support and achieve cessation of AAS, and treat and prevent associated health problems. METHODS: A comprehensive search strategy was developed in four bibliographic databases, supported by an iterative citation searching process to identify eligible studies. Studies of any psychological or medical treatment interventions delivered in response to non-prescribed use of AAS or an associated harm in any setting were eligible. RESULTS: In total, 109 eligible studies were identified, which included case reports representing a diverse range of disciplines and sources. Studies predominantly focussed on treatments for harms associated with AAS use, with scant evidence on interventions to support cessation of AAS use or responding to dependence. The types of conditions requiring treatment included psychiatric, neuroendocrine, hepatic, kidney, cardiovascular, musculoskeletal and infectious. There was limited evidence of engagement with users or delivery of psychosocial interventions as part of treatment for any condition, and of harm reduction interventions initiated alongside, or following, treatment. Findings were limited throughout by the case report study designs and limited information was provided. CONCLUSION: This scoping review indicates that while a range of case reports describe treatments provided to AAS users, there is scarce evidence on treating dependence, managing withdrawal, or initiating behaviour change in users in any settings. Evidence is urgently required to support the development of effective services for users and of evidence-based guidance and interventions to respond to users in a range of healthcare settings. More consistent reporting in articles of whether engagement or assessment relating to AAS was initiated, and publication within broader health- or drug-related journals, will support development of the evidence base
    corecore