990 research outputs found

    The Russo-Japanese War: Origins and Implications

    Get PDF
    The 1904-1905 Russo-Japanese War was the first major conflict of the twentieth century and a turning point in the balance of power in East Asia. In the short term, Russia’s defeat helped precipitate the 1905 Russian Revolution and the 1917 October Revolution. More broadly, the aftermath of the war informed Japan’s imperial ambitions in Manchuria—the early stages of World War II in Asia during the 1930s—and continuing Russo-Japanese enmity over Sakhalin Island and the Kuril Island chain. Studying this historical conflict in terms of international relations provides valuable insights into the nature of the conflict and how the past continues to shape modern geopolitics. As a case study, the war offers important lessons in the difficulties of sustained power projection and the exigencies involved in adaptable war planning. Equally important, Russia and Japan’s intractable imperial ambitions coupled with their failures to credibly communicate resolve serve as a cautionary tale on the consequences of inept diplomacy

    Subordination Pathways to Fractional Diffusion

    Full text link
    The uncoupled Continuous Time Random Walk (CTRW) in one space-dimension and under power law regime is splitted into three distinct random walks: (rw_1), a random walk along the line of natural time, happening in operational time; (rw_2), a random walk along the line of space, happening in operational time;(rw_3), the inversion of (rw_1), namely a random walk along the line of operational time, happening in natural time. Via the general integral equation of CTRW and appropriate rescaling, the transition to the diffusion limit is carried out for each of these three random walks. Combining the limits of (rw_1) and (rw_2) we get the method of parametric subordination for generating particle paths, whereas combination of (rw_2) and (rw_3) yields the subordination integral for the sojourn probability density in space-time fractional diffusion.Comment: 20 pages, 4 figure

    Energy propagation in linear hyperbolic systems

    Get PDF
    The concept of energy velocity for linear dispersive waves is usually given for a normal mode solution of the system as the ratio between the mean energy flux and the mean energy density. In the absence of dissipation this velocity is known to coincide with the corresponding group velocity. When dispersion is accompanied by dissipation, this interpretation is not correct since the group velocity loses its original meaning and can assume nonphysical values. In this note the relation between energy velocity and group velocity is derived for dissipative, uniaxial waves, governed by a linear hyperbolic system. An example is provided where the energy velocity is compared with the phase and group velocities

    Developing the Naval Mind

    Get PDF

    Non-diffusive transport in plasma turbulence: a fractional diffusion approach

    Full text link
    Numerical evidence of non-diffusive transport in three-dimensional, resistive pressure-gradient-driven plasma turbulence is presented. It is shown that the probability density function (pdf) of test particles' radial displacements is strongly non-Gaussian and exhibits algebraic decaying tails. To model these results we propose a macroscopic transport model for the pdf based on the use of fractional derivatives in space and time, that incorporate in a unified way space-time non-locality (non-Fickian transport), non-Gaussianity, and non-diffusive scaling. The fractional diffusion model reproduces the shape, and space-time scaling of the non-Gaussian pdf of turbulent transport calculations. The model also reproduces the observed super-diffusive scaling

    Finite Larmor radius effects on non-diffusive tracer transport in a zonal flow

    Full text link
    Finite Larmor radius (FLR) effects on non-diffusive transport in a prototypical zonal flow with drift waves are studied in the context of a simplified chaotic transport model. The model consists of a superposition of drift waves of the linearized Hasegawa-Mima equation and a zonal shear flow perpendicular to the density gradient. High frequency FLR effects are incorporated by gyroaveraging the ExB velocity. Transport in the direction of the density gradient is negligible and we therefore focus on transport parallel to the zonal flows. A prescribed asymmetry produces strongly asymmetric non- Gaussian PDFs of particle displacements, with L\'evy flights in one direction but not the other. For zero Larmor radius, a transition is observed in the scaling of the second moment of particle displacements. However, FLR effects seem to eliminate this transition. The PDFs of trapping and flight events show clear evidence of algebraic scaling with decay exponents depending on the value of the Larmor radii. The shape and spatio-temporal self-similar anomalous scaling of the PDFs of particle displacements are reproduced accurately with a neutral, asymmetric effective fractional diffusion model.Comment: 14 pages, 13 figures, submitted to Physics of Plasma

    Levi-Civita cylinders with fractional angular deficit

    Full text link
    The angular deficit factor in the Levi-Civita vacuum metric has been parametrized using a Riemann-Liouville fractional integral. This introduces a new parameter into the general relativistic cylinder description, the fractional index {\alpha}. When the fractional index is continued into the negative {\alpha} region, new behavior is found in the Gott-Hiscock cylinder and in an Israel shell.Comment: 5 figure

    Retarding Sub- and Accelerating Super-Diffusion Governed by Distributed Order Fractional Diffusion Equations

    Full text link
    We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equations and establish the relation to the Continuous Time Random Walk theory. We show that the distributed order time fractional diffusion equation describes the sub-diffusion random process which is subordinated to the Wiener process and whose diffusion exponent diminishes in time (retarding sub-diffusion) leading to superslow diffusion, for which the square displacement grows logarithmically in time. We also demonstrate that the distributed order space fractional diffusion equation describes super-diffusion phenomena when the diffusion exponent grows in time (accelerating super-diffusion).Comment: 11 pages, LaTe
    • …
    corecore