33 research outputs found

    miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non-Cell-Autonomous Mechanism in ALS.

    Get PDF
    Axon degeneration and disruption of neuromuscular junctions (NMJs) are key events in amyotrophic lateral sclerosis (ALS) pathology. Although the disease\u27s etiology is not fully understood, it is thought to involve a non-cell-autonomous mechanism and alterations in RNA metabolism. Here, we identified reduced levels of miR126-5p in presymptomatic ALS male mice models, and an increase in its targets: axon destabilizing Type 3 Semaphorins and their coreceptor Neuropilins. Using compartmentalize

    CRMP2 mediates Sema3F-dependent axon pruning and dendritic spine remodeling

    Get PDF
    Regulation of axon guidance and pruning of inappropriate synapses by class 3 semaphorins are key to the development of neural circuits. Collapsin response mediator protein 2 (CRMP2) has been shown to regulate axon guidance by mediating semaphorin 3A (Sema3A) signaling;however, nothing is known about its role in synapse pruning. Here, using newly generated crmp2(-/-) mice we demonstrate that CRMP2 has a moderate effect on Sema3A-dependent axon guidance in vivo, and its deficiency leads to a mild defect in axon guidance in peripheral nerves and the corpus callosum. Surprisingly, crmp2(-/-) mice display prominent defects in stereotyped axon pruning in hippocampus and visual cortex and altered dendritic spine remodeling, which is consistent with impaired Sema3F signaling and with models of autism spectrum disorder (ASD). We demonstrate that CRMP2 mediates Sema3F signaling in primary neurons and that crmp2(-/-) mice display ASD-related social behavior changes in the early postnatal period as well as in adults. Together, we demonstrate that CRMP2 mediates Sema3F-dependent synapse pruning and its dysfunction shares histological and behavioral features of ASD

    Social Media, Gender and the Mediatisation of War: Exploring the German Armed Forces’ Visual Representation of the Afghanistan Operation on Facebook

    Get PDF
    Studies on the mediatisation of war point to attempts of governments to regulate the visual perspective of their involvements in armed conflict – the most notable example being the practice of ‘embedded reporting’ in Iraq and Afghanistan. This paper focuses on a different strategy of visual meaning-making, namely, the publication of images on social media by armed forces themselves. Specifically, we argue that the mediatisation of war literature could profit from an increased engagement with feminist research, both within Critical Security/Critical Military Studies and within Science and Technology Studies that highlight the close connection between masculinity, technology and control. The article examines the German military mission in Afghanistan as represented on the German armed forces’ official Facebook page. Germany constitutes an interesting, and largely neglected, case for the growing literature on the mediatisation of war: its strong antimilitarist political culture makes the representation of war particularly delicate. The paper examines specific representational patterns of Germany’s involvement in Afghanistan and discusses the implications which arise from what is placed inside the frame of visibility and what remains out of its view

    A CRMP4‐dependent retrograde axon‐to‐soma death signal in amyotrophic lateral sclerosis

    Full text link
    Amyotrophic lateral sclerosis (ALS) is a fatal non‐cell‐autonomous neurodegenerative disease characterized by the loss of motor neurons (MNs). Mutations in CRMP4 are associated with ALS in patients, and elevated levels of CRMP4 are suggested to affect MN health in the SOD1G93A‐ALS mouse model. However, the mechanism by which CRMP4 mediates toxicity in ALS MNs is poorly understood. Here, by using tissue from human patients with sporadic ALS, MNs derived from C9orf72‐mutant patients, and the SOD1G93A‐ALS mouse model, we demonstrate that subcellular changes in CRMP4 levels promote MN loss in ALS. First, we show that while expression of CRMP4 protein is increased in cell bodies of ALS‐affected MN, CRMP4 levels are decreased in the distal axons. Cellular mislocalization of CRMP4 is caused by increased interaction with the retrograde motor protein, dynein, which mediates CRMP4 transport from distal axons to the soma and thereby promotes MN loss. Blocking the CRMP4‐dynein interaction reduces MN loss in human‐derived MNs (C9orf72) and in ALS model mice. Thus, we demonstrate a novel CRMP4‐dependent retrograde death signal that underlies MN loss in ALS.SynopsisIdentification of an intracellular mechanism that mediates motor neuron (MN) death in Amyotrophic Lateral Sclerosis (ALS). CRMP4 binds the motor protein dynein and transports from distal axons to the soma where it promotes MN death. Blocking the CRMP4‐dynein interaction reduces MN death in human‐derived MNs (C9orf72) and in ALS mice.CRMP4 protein level is altered along ALS diseased motor unit.Dynein mediates CRMP4 mislocalization in motor neurons via specific CRMP4 motif.CRMP4‐dynein complexes are enhanced in ALS diseased MNs.CRMP4‐dynein complex formation facilitates selective neuronal loss in ALS.Dynein‐mediated CRMP4 redistribution from axons into the cell bodies of ALS‐affected motor neurons promotes selective neuronal toxicity in diverse ALS model‐ and patient‐derived cells.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/1/embj2020107586.reviewer_comments.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/2/embj2020107586.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/3/embj2020107586-sup-0001-Appendix.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/169237/4/embj2020107586_am.pd

    Therapeutically viable generation of neurons with antisense oligonucleotide suppression of PTB.

    No full text
    Methods to enhance adult neurogenesis by reprogramming glial cells into neurons enable production of new neurons in the adult nervous system. Development of therapeutically viable approaches to induce new neurons is now required to bring this concept to clinical application. Here, we successfully generate new neurons in the cortex and dentate gyrus of the aged adult mouse brain by transiently suppressing polypyrimidine tract binding protein 1 using an antisense oligonucleotide delivered by a single injection into cerebral spinal fluid. Radial glial-like cells and other GFAP-expressing cells convert into new neurons that, over a 2-month period, acquire mature neuronal character in a process mimicking normal neuronal maturation. The new neurons functionally integrate into endogenous circuits and modify mouse behavior. Thus, generation of new neurons in the dentate gyrus of the aging brain can be achieved with a therapeutically feasible approach, thereby opening prospects for production of neurons to replace those lost to neurodegenerative disease
    corecore