310 research outputs found

    Noise dephasing in the edge states of the Integer Quantum Hall regime

    Full text link
    An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time τϕ(T)\tau_\phi(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure

    Robust quantum coherence above the Fermi sea

    Get PDF
    In this paper we present an experiment where we measured the quantum coherence of a quasiparticle injected at a well-defined energy above the Fermi sea into the edge states of the integer quantum Hall regime. Electrons are introduced in an electronic Mach-Zehnder interferometer after passing through a quantum dot that plays the role of an energy filter. Measurements show that above a threshold injection energy, the visibility of the quantum interferences is almost independent of the energy. This is true even for high energies, up to 130~μ\mueV, well above the thermal energy of the measured sample. This result is in strong contradiction with our theoretical predictions, which instead predict a continuous decrease of the interference visibility with increasing energy. This experiment raises serious questions concerning the understanding of excitations in the integer quantum Hall regime

    Tuning decoherence with a voltage probe

    Full text link
    We present an experiment where we tune the decoherence in a quantum interferometer using one of the simplest object available in the physic of quantum conductors : an ohmic contact. For that purpose, we designed an electronic Mach-Zehnder interferometer which has one of its two arms connected to an ohmic contact through a quantum point contact. At low temperature, we observe quantum interference patterns with a visibility up to 57%. Increasing the connection between one arm of the interferometer to the floating ohmic contact, the voltage probe, reduces quantum interferences as it probes the electron trajectory. This unique experimental realization of a voltage probe works as a trivial which-path detector whose efficiency can be simply tuned by a gate voltage

    Observation of two species of vortices in the anisotropic spin-triplet superconductor Sr2RuO4Sr_2 Ru O_4

    Full text link
    Magnetic flux structures in single crystals of the layered spin triplet superconductor Sr_2\_{2}RuO_4\_{4} are studied by scanning micro SQUID Force microscopy. Vortex chains appear as the applied field is tilted along the in-plane direction of the superconductor. The vortex chains align along the direction of the in-plane component of the applied magnetic field. The decoration of in-plane vortices by crossing Abrikosov vortices is observed: two vortex orientations are apparent simultaneously, one along the layers and the other perpendicular to the layers. The crossing vortices appear preferentially on the in-plane vortices

    Resonant photon absorption and hole burning in Cr7Ni antiferromagnetic rings

    Full text link
    Presented are magnetization measurements on a crystal of Cr7Ni antiferromagnetic rings. Irradiation with microwaves at frequencies between 1 and 10 GHz leads to observation of very narrow resonant photon absorption lines which are mainly broadened by hyperfin interactions. A two-pulse hole burning technique allowed us to estimate the characteristic energy diffusion time.Comment: 4 pages, 5 figure

    Finite bias visibility of the electronic Mach-Zehnder interferometer

    Full text link
    We present an original statistical method to measure the visibility of interferences in an electronic Mach-Zehnder interferometer in the presence of low frequency fluctuations. The visibility presents a single side lobe structure shown to result from a gaussian phase averaging whose variance is quadratic with the bias. To reinforce our approach and validate our statistical method, the same experiment is also realized with a stable sample. It exhibits the same visibility behavior as the fluctuating one, indicating the intrinsic character of finite bias phase averaging. In both samples, the dilution of the impinging current reduces the variance of the gaussian distribution.Comment: 4 pages, 5 figure

    Quantum coherence engineering in the integer quantum Hall regime

    Full text link
    We present an experiment where the quantum coherence in the edge states of the integer quantum Hall regime is tuned with a decoupling gate. The coherence length is determined by measuring the visibility of quantum interferences in a Mach-Zehnder interferometer as a function of temperature, in the quantum Hall regime at filling factor two. The temperature dependence of the coherence length can be varied by a factor of two. The strengthening of the phase coherence at finite temperature is shown to arise from a reduction of the coupling between co-propagating edge states. This opens the way for a strong improvement of the phase coherence of Quantum Hall systems. The decoupling gate also allows us to investigate how inter-edge state coupling influence the quantum interferences' dependence on the injection bias. We find that the finite bias visibility can be decomposed into two contributions: a Gaussian envelop which is surprisingly insensitive to the coupling, and a beating component which, on the contrary, is strongly affected by the coupling.Comment: 4 pages, 5 figure

    Angular-dependence of magnetization switching for a multi-domain dot: experiment and simulation

    Full text link
    We have measured the in-plane angular variation of nucleation and annihilation fields of a multi-domain magnetic single dot with a microsquid. The dots are Fe/Mo(110) self-assembled in UHV, with sub-micron size and a hexagonal shape. The angular variations were quantitatively reproduced by micromagnetic simulations. Discontinuities in the variations are observed, and shown to result from bifurcations related to the interplay of the non-uniform magnetization state with the shape of the dot.Comment: 4 pages, 4 figures, for submission as a regular articl
    corecore