320 research outputs found

    Conductance statistics in small insulating GaAs:Si wires at low temperature. II. Experimental study

    Full text link
    We have observed reproducible conductance fluctuations at low temperature in a small GaAs:Si wire driven across the Anderson transition by the application of a gate voltage. We analyse quantitatively the log-normal conductance statistics in terms of truncated quantum fluctuations. Quantum fluctuations due to small changes of the electron energy (controlled by the gate voltage) cannot develop fully due to identified geometrical fluctuations of the resistor network describing the hopping through the sample. The evolution of the fluctuations versus electron energy and magnetic field shows that the fluctuations are non-ergodic, except in the critical insulating region of the Anderson transition, where the localization length is larger than the distance between Si impurities. The mean magnetoconductance is in good accordance with simulations based on the Forward-Directed-Paths analysis, i.e. it saturates to ln(σ(H>1)/σ(0))1, {\rm ln} (\sigma (H>1)/\sigma (0))\simeq 1, as σ(0) \sigma (0) decreases over orders of magnitude in the strongly localized regime.Comment: Email contact: [email protected]

    Hepatitis C virus infection and related liver disease: the quest for the best animal model

    Get PDF
    Hepatitis C virus (HCV) is a major cause of cirrhosis and hepatocellular carcinoma (HCC) making the virus the most common cause of liver failure and transplantation. HCV is estimated to chronically affect 130 million individuals and to lead to more than 350,000 deaths per year worldwide. A vaccine is currently not available. The recently developed direct acting antivirals (DAAs) have markedly increased the efficacy of the standard of care but are not efficient enough to completely cure all chronically infected patients and their toxicity limits their use in patients with advanced liver disease, co-morbidity or transplant recipients. Because of the host restriction, which is limited to humans and non-human primates, in vivo study of HCV infection has been hampered since its discovery more than 20 years ago. The chimpanzee remains the most physiological model to study the innate and adaptive immune responses, but its use is ethically difficult and is now very restricted and regulated. The development of a small animal model that allows robust HCV infection has been achieved using chimeric liver immunodeficient mice, which are therefore not suitable for studying the adaptive immune responses. Nevertheless, these models allowed to go deeply in the comprehension of virus-host interactions and to assess different therapeutic approaches. The immunocompetent mouse models that were recently established by genetic humanization have shown an interesting improvement concerning the study of the immune responses but are still limited by the absence of the complete robust life cycle of the virus. In this review, we will focus on the relevant available animal models of HCV infection and their usefulness for deciphering the HCV life cycle and virus-induced liver disease, as well as for the development and evaluation of new therapeutics. We will also discuss the perspectives on future immunocompetent mouse models and the hurdles to their development

    Tuning Energy Relaxation along Quantum Hall Channels

    Full text link
    The chiral edge channels in the quantum Hall regime are considered ideal ballistic quantum channels, and have quantum information processing potentialities. Here, we demonstrate experimentally, at filling factor 2, the efficient tuning of the energy relaxation that limits quantum coherence and permits the return toward equilibrium. Energy relaxation along an edge channel is controllably enhanced by increasing its transmission toward a floating ohmic contact, in quantitative agreement with predictions. Moreover, by forming a closed inner edge channel loop, we freeze energy exchanges in the outer channel. This result also elucidates the inelastic mechanisms at work at filling factor 2, informing us in particular that those within the outer edge channel are negligible.Comment: 8 pages including supplementary materia

    Noise dephasing in the edge states of the Integer Quantum Hall regime

    Full text link
    An electronic Mach Zehnder interferometer is used in the integer quantum hall regime at filling factor 2, to study the dephasing of the interferences. This is found to be induced by the electrical noise existing in the edge states capacitively coupled to each others. Electrical shot noise created in one channel leads to phase randomization in the other, which destroys the interference pattern. These findings are extended to the dephasing induced by thermal noise instead of shot noise: it explains the underlying mechanism responsible for the finite temperature coherence time τϕ(T)\tau_\phi(T) of the edge states at filling factor 2, measured in a recent experiment. Finally, we present here a theory of the dephasing based on Gaussian noise, which is found in excellent agreement with our experimental results.Comment: ~4 pages, 4 figure

    Strong back-action of a linear circuit on a single electronic quantum channel

    Full text link
    What are the quantum laws of electricity in mesoscopic circuits? This very fundamental question has also direct implications for the quantum engineering of nanoelectronic devices. Indeed, when a quantum coherent conductor is inserted into a circuit, its transport properties are modified. In particular, its conductance is reduced because of the circuit back-action. This phenomenon, called environmental Coulomb blockade, results from the granularity of charge transfers across the coherent conductor. Although extensively studied for a tunnel junction in a linear circuit, it is only fully understood for arbitrary short coherent conductors in the limit of small circuit impedances and small conductance reduction. Here, we investigate experimentally the strong back-action regime, with a conductance reduction of up to 90%. This is achieved by embedding a single quantum channel of tunable transmission in an adjustable on-chip circuit of impedance comparable to the resistance quantum RK=h/e2R_K=h/e^2 at microwave frequencies. The experiment reveals important deviations from calculations performed in the weak back-action framework, and matches with recent theoretical results. From these measurements, we propose a generalized expression for the conductance of an arbitrary quantum channel embedded in a linear circuit.Comment: 11 pages including supplementary information, to be published in Nature Physic

    Robust quantum coherence above the Fermi sea

    Get PDF
    In this paper we present an experiment where we measured the quantum coherence of a quasiparticle injected at a well-defined energy above the Fermi sea into the edge states of the integer quantum Hall regime. Electrons are introduced in an electronic Mach-Zehnder interferometer after passing through a quantum dot that plays the role of an energy filter. Measurements show that above a threshold injection energy, the visibility of the quantum interferences is almost independent of the energy. This is true even for high energies, up to 130~μ\mueV, well above the thermal energy of the measured sample. This result is in strong contradiction with our theoretical predictions, which instead predict a continuous decrease of the interference visibility with increasing energy. This experiment raises serious questions concerning the understanding of excitations in the integer quantum Hall regime

    Tuning decoherence with a voltage probe

    Full text link
    We present an experiment where we tune the decoherence in a quantum interferometer using one of the simplest object available in the physic of quantum conductors : an ohmic contact. For that purpose, we designed an electronic Mach-Zehnder interferometer which has one of its two arms connected to an ohmic contact through a quantum point contact. At low temperature, we observe quantum interference patterns with a visibility up to 57%. Increasing the connection between one arm of the interferometer to the floating ohmic contact, the voltage probe, reduces quantum interferences as it probes the electron trajectory. This unique experimental realization of a voltage probe works as a trivial which-path detector whose efficiency can be simply tuned by a gate voltage
    corecore