1,836 research outputs found

    Current Algebra of Classical Non-Linear Sigma Models

    Full text link
    The current algebra of classical non-linear sigma models on arbitrary Riemannian manifolds is analyzed. It is found that introducing, in addition to the Noether current jμj_\mu associated with the global symmetry of the theory, a composite scalar field jj, the algebra closes under Poisson brackets.Comment: 6 page

    On determinant representations of scalar products and form factors in the SoV approach: the XXX case

    Full text link
    In the present article we study the form factors of quantum integrable lattice models solvable by the separation of variables (SoV) method. It was recently shown that these models admit universal determinant representations for the scalar products of the so-called separate states (a class which includes in particular all the eigenstates of the transfer matrix). These results permit to obtain simple expressions for the matrix elements of local operators (form factors). However, these representations have been obtained up to now only for the completely inhomogeneous versions of the lattice models considered. In this article we give a simple algebraic procedure to rewrite the scalar products (and hence the form factors) for the SoV related models as Izergin or Slavnov type determinants. This new form leads to simple expressions for the form factors in the homogeneous and thermodynamic limits. To make the presentation of our method clear, we have chosen to explain it first for the simple case of the XXXXXX Heisenberg chain with anti-periodic boundary conditions. We would nevertheless like to stress that the approach presented in this article applies as well to a wide range of models solved in the SoV framework.Comment: 46 page

    Factorizing FF-matrices and the XXZ spin-1/2 chain: A diagrammatic perspective

    Full text link
    Using notation inherited from the six-vertex model, we construct diagrams that represent the action of the factorizing FF-matrices associated to the finite length XXZ spin-1/2 chain. We prove that these FF-matrices factorize the tensor R1...nσR^{\sigma}_{1... n} corresponding with elements of the permutation group. We consider in particular the diagram for the tensor R1...nσcR^{\sigma_c}_{1... n}, which cyclically permutes the spin chain. This leads us to a diagrammatic construction of the local spin operators Si±S_i^{\pm} and SizS_i^{z} in terms of the monodromy matrix operators.Comment: 26 pages, extra references added, typographical errors correcte

    Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from SOV

    Full text link
    We solve the longstanding problem to define a functional characterization of the spectrum of the transfer matrix associated to the most general spin-1/2 representations of the 6-vertex reflection algebra for general inhomogeneous chains. The corresponding homogeneous limit reproduces the spectrum of the Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most general integrable boundaries. The spectrum is characterized by a second order finite difference functional equation of Baxter type with an inhomogeneous term which vanishes only for some special but yet interesting non-diagonal boundary conditions. This functional equation is shown to be equivalent to the known separation of variable (SOV) representation hence proving that it defines a complete characterization of the transfer matrix spectrum. The polynomial character of the Q-function allows us then to show that a finite system of equations of generalized Bethe type can be similarly used to describe the complete transfer matrix spectrum.Comment: 28 page

    Irreducibility of fusion modules over twisted Yangians at generic point

    Full text link
    With any skew Young diagram one can associate a one parameter family of "elementary" modules over the Yangian \Yg(\g\l_N). Consider the twisted Yangian \Yg(\g_N)\subset \Yg(\g\l_N) associated with a classical matrix Lie algebra \g_N\subset\g\l_N. Regard the tensor product of elementary Yangian modules as a module over \Yg(\g_N) by restriction. We prove its irreducibility for generic values of the parameters.Comment: Replaced with journal version, 18 page

    The universal R-matrix and its associated quantum algebra as functionals of the classical r-matrix: the sl2sl_{2} case

    Get PDF
    Using a geometrical approach to the quantum Yang-Baxter equation, the quantum algebra U(sl2){\cal U}_{\hbar}(sl_{2}) and its universal quantum RR-matrix are explicitely constructed as functionals of the associated classical rr-matrix. In this framework, the quantum algebra U(sl2){\cal U}_{\hbar}(sl_{2}) is naturally imbedded in the universal envelopping algebra of the sl2sl_{2} current algebra
    corecore