1,836 research outputs found
Current Algebra of Classical Non-Linear Sigma Models
The current algebra of classical non-linear sigma models on arbitrary
Riemannian manifolds is analyzed. It is found that introducing, in addition to
the Noether current associated with the global symmetry of the theory,
a composite scalar field , the algebra closes under Poisson brackets.Comment: 6 page
On determinant representations of scalar products and form factors in the SoV approach: the XXX case
In the present article we study the form factors of quantum integrable
lattice models solvable by the separation of variables (SoV) method. It was
recently shown that these models admit universal determinant representations
for the scalar products of the so-called separate states (a class which
includes in particular all the eigenstates of the transfer matrix). These
results permit to obtain simple expressions for the matrix elements of local
operators (form factors). However, these representations have been obtained up
to now only for the completely inhomogeneous versions of the lattice models
considered. In this article we give a simple algebraic procedure to rewrite the
scalar products (and hence the form factors) for the SoV related models as
Izergin or Slavnov type determinants. This new form leads to simple expressions
for the form factors in the homogeneous and thermodynamic limits. To make the
presentation of our method clear, we have chosen to explain it first for the
simple case of the Heisenberg chain with anti-periodic boundary
conditions. We would nevertheless like to stress that the approach presented in
this article applies as well to a wide range of models solved in the SoV
framework.Comment: 46 page
Factorizing -matrices and the XXZ spin-1/2 chain: A diagrammatic perspective
Using notation inherited from the six-vertex model, we construct diagrams
that represent the action of the factorizing -matrices associated to the
finite length XXZ spin-1/2 chain. We prove that these -matrices factorize
the tensor corresponding with elements of the permutation
group. We consider in particular the diagram for the tensor , which cyclically permutes the spin chain. This leads us to a diagrammatic
construction of the local spin operators and in terms of
the monodromy matrix operators.Comment: 26 pages, extra references added, typographical errors correcte
Open spin chains with generic integrable boundaries: Baxter equation and Bethe ansatz completeness from SOV
We solve the longstanding problem to define a functional characterization of
the spectrum of the transfer matrix associated to the most general spin-1/2
representations of the 6-vertex reflection algebra for general inhomogeneous
chains. The corresponding homogeneous limit reproduces the spectrum of the
Hamiltonian of the spin-1/2 open XXZ and XXX quantum chains with the most
general integrable boundaries. The spectrum is characterized by a second order
finite difference functional equation of Baxter type with an inhomogeneous term
which vanishes only for some special but yet interesting non-diagonal boundary
conditions. This functional equation is shown to be equivalent to the known
separation of variable (SOV) representation hence proving that it defines a
complete characterization of the transfer matrix spectrum. The polynomial
character of the Q-function allows us then to show that a finite system of
equations of generalized Bethe type can be similarly used to describe the
complete transfer matrix spectrum.Comment: 28 page
Irreducibility of fusion modules over twisted Yangians at generic point
With any skew Young diagram one can associate a one parameter family of
"elementary" modules over the Yangian \Yg(\g\l_N). Consider the twisted
Yangian \Yg(\g_N)\subset \Yg(\g\l_N) associated with a classical matrix Lie
algebra \g_N\subset\g\l_N. Regard the tensor product of elementary Yangian
modules as a module over \Yg(\g_N) by restriction. We prove its
irreducibility for generic values of the parameters.Comment: Replaced with journal version, 18 page
The universal R-matrix and its associated quantum algebra as functionals of the classical r-matrix: the case
Using a geometrical approach to the quantum Yang-Baxter equation, the quantum algebra and its universal quantum -matrix are explicitely constructed as functionals of the associated classical -matrix. In this framework, the quantum algebra is naturally imbedded in the universal envelopping algebra of the current algebra
- …
