38 research outputs found

    Physical activity intervention effects on perceived stress in working mothers: the role of self-efficacy

    Get PDF
    Working mothers often report elevated stress, and efforts to improve their coping resources are needed to buffer the detrimental effects of stress on health. This study examined the impact of changes in physical activity, self-efficacy, and self-regulation across the course of a brief intervention on subsequent levels of stress in working mothers. Participants (N=141) were randomly assigned to an intervention or control condition (2:1 ratio). The intervention was conducted in Illinois between March 2011-January 2012 and consisted of two group-mediated workshop sessions with content based on Social Cognitive Theory. Participants completed measures of physical activity, self-efficacy, self-regulation, and perceived stress at baseline, immediately post-intervention, and 6-month follow-up. Stress levels declined across the 6-month period in both groups. Changes in stress were negatively associated with changes in self-efficacy and self-regulation among intervention participants only. Regression analyses revealed the intervention elicited short-term increases in physical activity, self-efficacy, and self-regulation, but only changes in self-efficacy predicted perceived stress at 6-month follow-up. These results suggest that enhancing self-efficacy is likely to improve working mothers’ perceived capabilities to cope with stressors in their lives. Future interventions should continue to focus on increasing self-efficacy to promote improvements in physical activity and psychological well-being in this population

    Physical activity barriers and facilitators among working mothers and fathers

    Get PDF
    Background: The transition to parenthood is consistently associated with declines in physical activity. In particular, working parents are at risk for inactivity, but research exploring physical activity barriers and facilitators in this population has been scarce. The purpose of this study was to qualitatively examine perceptions of physical activity among working parents. Methods: Working mothers (n = 13) and fathers (n = 12) were recruited to participate in one of four focus group sessions and discuss physical activity barriers and facilitators. Data were analyzed using immersion/crystallization in NVivo 10. Results: Major themes for barriers included family responsibilities, guilt, lack of support, scheduling constraints, and work. Major themes for facilitators included being active with children or during children’s activities, being a role model for children, making time/prioritizing, benefits to health and family, and having support available. Several gender differences emerged within each theme, but overall both mothers and fathers reported their priorities had shifted to focus on family after becoming parents, and those who were fitting in physical activity had developed strategies that allowed them to balance their household and occupational responsibilities. Conclusions: The results of this study suggest working mothers and fathers report similar physical activity barriers and facilitators and would benefit from interventions that teach strategies for overcoming barriers and prioritizing physical activity amidst the demands of parenthood. Future interventions might consider targeting mothers and fathers in tandem to create an optimally supportive environment in the home

    Does dietary intake change during an intervention to reduce sedentary behavior and cardiovascular disease risk? A randomized comparative effectiveness trial

    Get PDF
    Citation: Casey, K., Mailey, E. L., Rosenkranz, R. R., Swank, A., Ablah, E., & Rosenkranz, S. K. (2018). Does dietary intake change during an intervention to reduce sedentary behavior and cardiovascular disease risk? A randomized comparative effectiveness trial. BMC Nutrition, 4(1). https://doi.org/10.1186/s40795-018-0223-1Background: Evidence from physical activity interventions suggests that women, in particular, may overcompensate for exercise energy expenditure by increasing caloric intake. Sedentary behavior and poor dietary quality are independent risk factors for many major chronic diseases, including cardiovascular disease (CVD). The primary purpose of this study was to determine whether insufficiently active women, accumulating less than 60 min per week of moderate-to-vigorous physical activity, alter caloric intake or dietary quality when participating in an 8-week intervention to reduce sedentary behavior and CVD risk. A secondary aim was to determine whether the two treatment groups differed from one another in dietary intake while participating in the intervention. Methods: Insufficiently active women (n = 49) working full-time sedentary jobs were randomized to one of two treatment groups to reduce sedentary behavior during the workweek: short-break (1–2 min breaks from sitting every half hour, SB), or long-break (15 min breaks from sitting twice daily, LB). Three-day food records were collected at baseline, week 4 and week 8. Dietary quality was assessed using the Alternative Healthy Eating Index 2010 (AHEI-2010). Risk factors for CVD were assessed at baseline and week 8. Results: For all participants, average caloric intake decreased significantly from baseline to week 8 by approximately 12% (Δ = − 216.0 kcals, p = 0.003). Average caloric intake decreased significantly over time for the SB group (Δ = − 369.6 kcals, p = 0.004), but not the LB group (Δ = − 179.5 kcals, p = 0.17). There was no significant difference between SB and LB groups with regard to calories from baseline to week 8 (F = 0.51, p = 0.48). Total AHEI-2010 scores did not decrease significantly for all participants (Δ = − 4.0, p = 0.14), SB (Δ = − 5.2, p = 0.16), or LB groups (Δ = − 4.5, p = 0.67). Conclusions: Following an 8-week intervention to reduce sedentary time, insufficiently active women decreased caloric intake over time, however there were no differences between SB and LB groups. In all participants, dietary quality was not altered over time. Future studies should explore sedentary reduction interventions compared to physical activity interventions as a means to create negative energy balance, as frequent sedentary breaks may be effective for improving health outcomes in women. Trial registration: ClinicalTrials.gov registration number NCT02609438, retrospectively registered November 20, 2015

    Measuring enjoyment of physical activity in older adults: invariance of the physical activity enjoyment scale (paces) across groups and time

    Get PDF
    The purpose of this study was to validate the Physical Activity Enjoyment Scale (PACES) in a sample of older adults. Participants within two different exercise groups were assessed at two time points, 6 months apart. Group and longitudinal invariance was established for a novel, 8-item version of the PACES. The shortened, psychometrically sound measure provides researchers and practitioners an expedited and reliable instrument for assessing the enjoyment of physical activity

    Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Get PDF
    Citation: Wong, C. N., Chaddock-Heyman, L., Voss, M. W., Burzynska, A. Z., Basak, C., Erickson, K. I., . . . Kramer, A. F. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, 10. doi:10.3389/fnagi.2015.00154Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function

    Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults

    Get PDF
    Citation: Wong, C. N., Chaddock-Heyman, L., Voss, M. W., Burzynska, A. Z., Basak, C., Erickson, K. I., . . . Kramer, A. F. (2015). Brain activation during dual-task processing is associated with cardiorespiratory fitness and performance in older adults. Frontiers in Aging Neuroscience, 7, 10. doi:10.3389/fnagi.2015.00154Higher cardiorespiratory fitness is associated with better cognitive performance and enhanced brain activation. Yet, the extent to which cardiorespiratory fitness-related brain activation is associated with better cognitive performance is not well understood. In this cross-sectional study, we examined whether the association between cardiorespiratory fitness and executive function was mediated by greater prefrontal cortex activation in healthy older adults. Brain activation was measured during dual-task performance with functional magnetic resonance imaging in a sample of 128 healthy older adults (59-80 years). Higher cardiorespiratory fitness was associated with greater activation during dual-task processing in several brain areas including the anterior cingulate and supplementary motor cortex (ACC/SMA), thalamus and basal ganglia, right motor/somatosensory cortex and middle frontal gyrus, and left somatosensory cortex, controlling for age, sex, education, and gray matter volume. Of these regions, greater ACC/SMA activation mediated the association between cardiorespiratory fitness and dual-task performance. We provide novel evidence that cardiorespiratory fitness may support cognitive performance by facilitating brain activation in a core region critical for executive function

    Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory

    Get PDF
    Aerobic exercise is a promising form of prevention for cognitive decline; however, little is known about the molecular mechanisms by which exercise and fitness impacts the human brain. Several studies have postulated that increased regional brain volume and function are associated with aerobic fitness because of increased vascularization rather than increased neural tissue per se. We tested this position by examining the relationship between cardiorespiratory fitness and N-acetylaspartate (NAA) levels in the right frontal cortex using magnetic resonance spectroscopy. NAA is a nervous system specific metabolite found predominantly in cell bodies of neurons. We reasoned that if aerobic fitness was predominantly influencing the vasculature of the brain, then NAA levels should not vary as a function of aerobic fitness. However, if aerobic fitness influences the number or viability of neurons, then higher aerobic fitness levels might be associated with greater concentrations of NAA. We examined NAA levels, aerobic fitness, and cognitive performance in 137 older adults without cognitive impairment. Consistent with the latter hypothesis, we found that higher aerobic fitness levels offset an age-related decline in NAA. Furthermore, NAA mediated an association between fitness and backward digit span performance, suggesting that neuronal viability as measured by NAA is important in understanding fitness-related cognitive enhancement. Since NAA is found exclusively in neural tissue, our results indicate that the effect of fitness on the human brain extends beyond vascularization; aerobic fitness is associated with neuronal viability in the frontal cortex of older adults

    Plasticity of Brain Networks in a Randomized Intervention Trial of Exercise Training in Older Adults

    Get PDF
    Research has shown the human brain is organized into separable functional networks during rest and varied states of cognition, and that aging is associated with specific network dysfunctions. The present study used functional magnetic resonance imaging (fMRI) to examine low-frequency (0.008 < f < 0.08 Hz) coherence of cognitively relevant and sensory brain networks in older adults who participated in a 1-year intervention trial, comparing the effects of aerobic and non-aerobic fitness training on brain function and cognition. Results showed that aerobic training improved the aging brain's resting functional efficiency in higher-level cognitive networks. One year of walking increased functional connectivity between aspects of the frontal, posterior, and temporal cortices within the Default Mode Network and a Frontal Executive Network, two brain networks central to brain dysfunction in aging. Length of training was also an important factor. Effects in favor of the walking group were observed only after 12 months of training, compared to non-significant trends after 6 months. A non-aerobic stretching and toning group also showed increased functional connectivity in the DMN after 6 months and in a Frontal Parietal Network after 12 months, possibly reflecting experience-dependent plasticity. Finally, we found that changes in functional connectivity were behaviorally relevant. Increased functional connectivity was associated with greater improvement in executive function. Therefore the study provides the first evidence for exercise-induced functional plasticity in large-scale brain systems in the aging brain, using functional connectivity techniques, and offers new insight into the role of aerobic fitness in attenuating age-related brain dysfunction

    Construct validation of a non-exercise measure of cardiorespiratory fitness in older adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cardiorespiratory fitness (CRF) is associated with a decreased risk of all-cause mortality but is rarely assessed in medical settings due to burdens of time, cost, risk, and resources. The purpose of this study was to test the construct validity of a regression equation developed by Jurca and colleagues (2005) to estimate CRF without exercise testing in community dwelling older adults.</p> <p>Methods</p> <p>Participants (n = 172) aged 60 to 80 years with no contraindications to submaximal or maximal exercise testing completed a maximal graded exercise test (GXT) and the submaximal Rockport 1-mile walk test on separate occasions. Data included in the regression equation (age, sex, body mass index, resting heart rate, and physical activity) were obtained via measurement or self-report. Participants also reported presence of cardiovascular conditions.</p> <p>Results</p> <p>The multiple R for the regression equation was .72, <it>p < .001 </it>and CRF estimated from this equation was significantly correlated with the MET value from the GXT (<it>r </it>= 0.66) and with CRF estimated from submaximal field testing (<it>r </it>= 0.67). All three CRF indices were significantly and inversely associated with reporting more cardiovascular conditions.</p> <p>Conclusions</p> <p>This research provides preliminary evidence that a non-exercise estimate of CRF is at least as valid as field test estimates of CRF and represents a low-risk, low-cost, and expedient method for estimating fitness in older adults.</p
    corecore