7 research outputs found

    Biomechanics of the Taekwondo Axe Kick: a review

    Get PDF
    The axe kick in Taekwondo has been observed to be a highly effective offensive and defensive technique. Its purpose is to attack the opponent’s head, collarbone or chest with a powerful downward force. However, few researchers have studied the biomechanics of this kicking technique. The modified competition rules of World Taekwondo Federation (WTF) on the number of points to the head resulted increase in the number of kicks to the head by athletes using the axe kick. Therefore it is important to know the biomechanical principles of the axe kick for executing the kick effectively with minimum injury to the opponent’s head, collarbone or chest and for scoring maximum number of points in a competition. The main purpose of this article is to present a general description, variations and biomechanics of the Taekwondo axe kick

    Sediment Transport Model for a Surface Irrigation System

    Get PDF
    Controlling irrigation-induced soil erosion is one of the important issues of irrigation management and surface water impairment. Irrigation models are useful in managing the irrigation and the associated ill effects on agricultural environment. In this paper, a physically based surface irrigation model was developed to predict sediment transport in irrigated furrows by integrating an irrigation hydraulic model with a quasi-steady state sediment transport model to predict sediment load in furrow irrigation. The irrigation hydraulic model simulates flow in a furrow irrigation system using the analytically solved zero-inertial overland flow equations and 1D-Green-Ampt, 2D-Fok, and Kostiakov-Lewis infiltration equations. Performance of the sediment transport model was evaluated for bare and cropped furrow fields. The results indicated that the sediment transport model can predict the initial sediment rate adequately, but the simulated sediment rate was less accurate for the later part of the irrigation event. Sensitivity analysis of the parameters of the sediment module showed that the soil erodibility coefficient was the most influential parameter for determining sediment load in furrow irrigation. The developed modeling tool can be used as a water management tool for mitigating sediment loss from the surface irrigated fields

    Nitrogen Leaching from Saybrook Soil Amended with Biosolid and Polyacrylamide

    No full text

    Crop Residue Biomass Effects on Agricultural Runoff

    No full text
    High residue loads associated with conservation tillage and cover cropping may impede water flow in furrow irrigation and thus decrease the efficiency of water delivery and runoff water quality. In this study, the biomass residue effects on infiltration, runoff, and export of total suspended solids (TSS), dissolved organic carbon (DOC), sediment-associated carbon (TSS-C), and other undesirable constituents such as phosphate (soluble P), nitrate (), and ammonium () in runoff water from a furrow-irrigated field were studied. Furrow irrigation experiments were conducted in 91 and 274 m long fields, in which the amount of residue in the furrows varied among four treatments. The biomass residue in the furrows increased infiltration, and this affected total load of DOC, TSS, and TSS-C. Net storage of DOC took place in the long but not in the short field because most of the applied water ran off in the short field. Increasing field length decreased TSS and TSS-C losses. Total load of , , and soluble P decreased with increasing distance from the inflow due to infiltration. The concentration and load of P increased with increasing residue biomass in furrows, but no particular trend was observed for and . Overall, the constituents in the runoff decreased with increasing surface cover and field length

    Performance evaluation of hydrocyclone filter for microirrigation Avaliação do desempenho de filtro hidrociclone para a irrigação localizada

    No full text
    In this study a hydrocyclone filter of 20 cm was selected and its performance was evaluated by studying the variation of discharge, pressure drop, influent concentration, and filtration efficiency with elapsed time of operation. The filter was tested with clean water to determine clean pressure drop and later it was tested with four concentrations of solid suspension, viz. 300; 600; 900 and 1,200 mg L-1. In the concentration of 300 mg L-1, the variation of pressure drop was low. But for the other concentrations of solid suspension, the variation was significant. The maximum pressure drops obtained were 41.19, 45.11, 50.01 and 52.95 kPa at 350, 390, 280 and 190 minutes of elapsed time, respectively. The maximum efficiency of solid suspension was 30.3, 32.96, 43.89 and 52.5% where as the minimum efficiencies were 9.91, 9.93, 9.62 and 9.9%, respectively. The hydrociclone tested presented inefficiency to filter small particles as clay. The initial removal efficiency of higher concentration was bigger than for lower concentration but, the final efficiency are almost the same irrespective of the concentration of solid suspension. The present tested hydrocyclone could be used as a pre-filter microirrigation to prevent emitter clogging.<br>Neste estudo, avaliou-se o desempenho de um filtro hidrociclone de 20 cm pelo estudo da variação de vazão, queda de pressão, concentração na alimentação e eficiência de filtração com o tempo de operação do filtro. O filtro foi testado com água limpa para determinar a queda de pressão e depois foi testado com quatro concentrações de suspensão do solo de 300; 600; 900 e 1.200 mg L-1. No caso de 300 mg L-1, a variação da queda de pressão foi baixa. Para as outras concentrações de suspensão de sólidos, a variação foi expressiva. A máxima queda de pressão obtida foi de 41,19; 45,11; 50,01 e 52,95 kPa aos 350; 390; 280 e 190 minutos de operação, respectivamente. As máximas eficiências para as concentrações de sólidos suspensos foram de 30,3; 32,96; 43,89 e 52,5%, onde as mínimas eficiências foram de 9,91; 9,93; 9,62 e 9,9%, respectivamente. O hidrociclone testado apresentou ineficiência para filtrar pequenas partículas, como argila. A eficiência inicial de remoção para altas concentrações foi maior quando comparada às obtidas para baixas concentrações, mas as eficiências finais são independentes da concentração da suspensão de sólidos. O hidrociclone testado é apropriado para ser usado como pré-filtro na irrigação localizada para prevenir entupimentos por partículas sólidas

    Effects of field length and management practices on dissolved organic carbon export in furrow irrigation

    No full text
    Farming practices, including tillage, cover cropping and residue management can have profound effects on the efficiency of irrigation practices. The effects of three field management practices (FMPs) standard tillage and winter-fallow (ST), standard tillage and winter-cover crop (STCC), and no-till and winter-fallow (NT) and two field lengths (122 and 366 m) on runoff and export of dissolved organic carbon (DOC) were investigated in a furrow-irrigated cropping system over two years. The residue cover was 40, 32 and 11% in 2007, and 58, 61 and 11% in 2008 for STCC, NT and ST, respectively. Furrow irrigation experiments were conducted prior to crop planting following the cover crop. The inflow was kept constant across all treatments, and infiltration and runoff were estimated using a volume balance model (VBM). The DOC concentration tended to increase with increasing field length, but did not differ among the FMPs. A threefold increase in field length increased infiltration by 40%, and decreased runoff by 60-90% and DOC export by 65-83%. In both years, infiltration was highest in STCC. In NT, infiltration was lowest in 2007, which was likely due to soil sealing, and intermediate among the three FMPs in 2008 perhaps due to the increase in residue cover in the second year. The DOC budget analysis showed that fields and FMPs acted as DOC sinks exporting less DOC than was applied in the irrigation water. The results suggest that longer furrows and STCC were greater DOC sinks compared to ST and shorter field practices. The VBM, as applied in this study to estimate infiltration and runoff, could be used to predict optimal field length to minimize runoff and promote DOC adsorption to soil within the constraints of water quality and availability and soil conditions.Furrow irrigation Dissolved organic carbon No till Field length Cover crop Volume balance
    corecore