22 research outputs found

    Multicomponent encapsulation into fully degradable protein nanocarriers via interfacial azide-alkyne click reaction in miniemulsion allows the co-delivery of immunotherapeutics

    Get PDF
    Encapsulation of multiple adjuvants along with antigens into nanocarriers allows a co-delivery to antigen-presenting cells for the synergistic induction of robust immune responses. However, loading cargoes of different molar masses, polarities, and solubilities in high efficiencies remains a challenge. Therefore, we developed a strategy to encapsulate a triple combination of the so-called adjuvants, i.e. with Resiquimod (R848), muramyl dipeptide (MDP) and polyinosinic-polycytidylic acid (Poly(I : C)) into human serum albumin (HSA) nanocarriers. The loading is conducted in situ while the nanocarrier is formed by an orthogonal and metal-free click reaction at the interface of an inverse miniemulsion. By this unique approach, high encapsulation efficiency without harming the cargo during the nanocarrier formation process and regardless of their physical properties is achieved, thus keeping their bioactivity. Furthermore, we demonstrated high control over the encapsulation efficiency and varying the amount of each cargo did not influence the efficiency of multicomponent encapsulation. Azide-modified HSA was crosslinked with hexanediol dipropiolate (HDDP) at the interface of a water-in-oil miniemulsion. Varying the crosslinker amount allowed us to tailor the density and degradation rates of the protein shell. Additional installation of disulfide bonds into the crosslinker created redox-responsive nanocarriers, which degraded both by protease and under reducing conditions with dithiothreitol. The prepared HSA nanocarriers were efficiently taken up by dendritic cells and exhibited an additive cell activation and maturation, exceeding the nanocarriers loaded with only a single drug. This general protocol allows the orthogonal and metal-free encapsulation of various drugs or adjuvants at defined concentrations into the protein nanocarriers

    An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing

    Get PDF
    An organic artificial neuron that is based on a compact nonlinear electrochemical element can operate in a liquid and responds to the concentration of biological species in its surroundings, allowing its behaviour to be modulated, for example, by interfacing with the membranes of living cells.The effective mimicry of neurons is key to the development of neuromorphic electronics. However, artificial neurons are not typically capable of operating in biological environments, which limits their ability to interface with biological components and to offer realistic neuronal emulation. Organic artificial neurons based on conventional circuit oscillators have been created, but they require many elements for their implementation. Here we report an organic artificial neuron that is based on a compact nonlinear electrochemical element. The artificial neuron can operate in a liquid and is sensitive to the concentration of biological species (such as dopamine or ions) in its surroundings. The system offers in situ operation and spiking behaviour in biologically relevant environments-including typical physiological and pathological concentration ranges (5-150 mM)-and with ion specificity. Small-amplitude (1-150 mV) electrochemical oscillations and noise in the electrolytic medium shape the neuronal dynamics, whereas changes in ionic (>= 2% over the physiological baseline) and biomolecular (>= 0.1 mM dopamine) concentrations modulate the neuronal excitability. We also create biohybrid interfaces in which an artificial neuron functions synergistically and in real time with epithelial cell biological membranes
    corecore