62 research outputs found

    Monitoring Reversible Tight Junction Modulation with a Current‐Driven Organic Electrochemical Transistor

    Get PDF
    AbstractThe barrier functionality of a cell layer regulates the passage of nutrients into the blood. Modulating the barrier functionality by external chemical agents like poly‐l‐lysine (PLL) is crucial for drug delivery. The ability of a cell layer to impede the passage of ions through it and therefore to act as a barrier, can be assessed electrically by measuring the resistance across the cell layer. Here, an organic electrochemical transistor (OECT) is used in a current‐driven configuration for the evaluation of reversible modulation of tight junctions in Caco‐2 cells over time. Exposure to low and medium concentrations of PLL initiates reversible modulation, whereas a too high concentration induces an irreversible barrier disruption due to nonfunctional tight junction proteins. The results demonstrate the suitability of OECTs to in situ monitor temporal barrier modulation and recovery, which can offer valuable information for drug delivery applications

    Current-Driven Organic Electrochemical Transistors for Monitoring Cell Layer Integrity with Enhanced Sensitivity

    Get PDF
    AbstractIn this progress report an overview is given on the use of the organic electrochemical transistor (OECT) as a biosensor for impedance sensing of cell layers. The transient OECT current can be used to detect changes in the impedance of the cell layer, as shown by Jimison et al. To circumvent the application of a high gate bias and preventing electrolysis of the electrolyte, in case of small impedance variations, an alternative measuring technique based on an OECT in a current‐driven configuration is developed. The ion‐sensitivity is larger than 1200 mV V‐1dec‐1 at low operating voltage. It can be even further enhanced using an OECT based complementary amplifier, which consists of a p‐type and an n‐type OECT connected in series, as known from digital electronics. The monitoring of cell layer integrity and irreversible disruption of barrier function with the current‐driven OECT is demonstrated for an epithelial Caco‐2 cell layer, showing the enhanced ion‐sensitivity as compared to the standard OECT configuration. As a state‐of‐the‐art application of the current‐driven OECT, the in situ monitoring of reversible tight junction modulation under the effect of drug additives, like poly‐l‐lysine, is discussed. This shows its potential for in vitro and even in vivo toxicological and drug delivery studies

    Labeling of mesenchymal stromal cells with iron oxide-poly(l-lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties

    Get PDF
    Background aims. Mesenchymal stromal cells (MSC) are the focus of research in regenerative medicine aiming at the regulatory approval of these cells for specific indications. To cope with the regulatory requirements for somatic cell therapy, novel approaches that do not interfere with the natural behavior of the cells are necessary. In this context in vivo magnetic resonance imaging (MRI) of labeled MSC could be an appropriate tool. Cell labeling for MRI with a variety of different iron oxide preparations is frequently published. However, most publications lack a comprehensive assessment of the noninterference of the contrast agent with the functionality of the labeled MSC, which is a prerequisite for the validity of cell-tracking via MRI. Methods.We studied the effects of iron oxide-poly(L-lactide) nanoparticles in MSC with flow cytom-etry, transmission electron microscopy (TEM), confocal laser scanning microscopy (CLSM), Prussian blue staining, CyQuantÂź proliferation testing, colony-forming unit-fibroblast (CFU-F) assays, flow chamber adhesion testing, immuno-logic tests and differentiation tests. Furthermore iron-labeled MSC were studied by MRI in agarose phantoms and Wistar rats. Results. It could be demonstrated that MSC show rapid uptake of nanoparticles and long-lasting intracellular persistence in the endosomal compartment. Labeling of the MSC with these particles has no influence on viability, differentiation, clonogenicity, proliferation, adhesion, phenotype and immunosuppressive properties. They show excellent MRI properties in agarose phantoms and after subcutaneous implantation in rats over several weeks. Conclusions. These particles qualify for studying MSC homing and trafficking via MRI

    Electrochemical noise and impedance of Au electrode/electrolyte interfaces enabling extracellular detection of glioma cell populations

    Get PDF
    Microelectrode arrays (MEA) record extracellular local field potentials of cells adhered to the electrodes. A disadvantage is the limited signal-to-noise ratio. The state-of-the-art background noise level is about 10 ÎŒVpp. Furthermore, in MEAs low frequency events are filtered out. Here, we quantitatively analyze Au electrode/electrolyte interfaces with impedance spectroscopy and noise measurements. The equivalent circuit is the charge transfer resistance in parallel with a constant phase element that describes the double layer capacitance, in series with a spreading resistance. This equivalent circuit leads to a Maxwell-Wagner relaxation frequency, the value of which is determined as a function of electrode area and molarity of an aqueous KCl electrolyte solution. The electrochemical voltage and current noise is measured as a function of electrode area and frequency and follow unambiguously from the measured impedance. By using large area electrodes the noise floor can be as low as 0.3 ÎŒVpp. The resulting high sensitivity is demonstrated by the extracellular detection of C6 glioma cell populations. Their minute electrical activity can be clearly detected at a frequency below about 10 Hz, which shows that the methodology can be used to monitor slow cooperative biological signals in cell populations.</p

    Nanoparticles Surface Chemistry Influence on Protein Corona Composition and Inflammatory Responses

    Get PDF
    Nanoparticles are widely used for biomedical applications such as vaccine, drug delivery, diagnostics, and therapeutics. This study aims to reveal the influence of nanoparticle surface functionalization on protein corona formation from blood serum and plasma and the subsequent effects on the innate immune cellular responses. To achieve this goal, the surface chemistry of silica nanoparticles of 20 nm diameter was tailored via plasma polymerization with amine, carboxylic acid, oxazolines, and alkane functionalities. The results of this study show significant surface chemistry-induced differences in protein corona composition, which reflect in the subsequent inflammatory consequences. Nanoparticles rich with carboxylic acid surface functionalities increased the production of pro-inflammatory cytokines in response to higher level of complement proteins and decreased the number of lipoproteins found in their protein coronas. On another hand, amine rich coatings led to increased expressions of anti-inflammatory markers such as arginase. The findings demonstrate the potential to direct physiological responses to nanomaterials via tailoring their surface chemical composition

    The challenges of oral drug delivery via nanocarriers

    No full text
    The oral application of pharmaceuticals is unarguably the most convenient method of application. Especially for protein- or peptide-based drugs, however, the effectiveness is significantly reduced due to enzymatic digestion in the stomach as well as a poor bioavailability in the small intestine. For these difficult formulations, the encapsulation into nanocarriers would protect the sensitive drug and thus could considerably improve the efficiency of oral drug delivery. In the last years, many candidate biodegradable nanomaterials for such carrier systems have been published. However, before the cargo can be released, the nanocarrier needs to cross multiple barriers of the human body, including a layer of intestinal mucus and epithelial as well as endothelial cells. For overcoming these cellular barriers, transcytosis is favored over a paracellular transport for most nanomaterials as paracellular transport routes lack selectivity of transported molecules once opened up. The exact mechanisms behind the transcellular translocations are up to now still not completely understood. For the vast majority of nanocarriers, the rate of transcellular transport is not sufficient to realize their application in oral drug delivery. Especially trafficking into the endolysosomal pathway often marks a key problem. In this review, we focus on the molecular mechanisms of overcoming cellular barriers, especially transcytosis, and highlight difficulties of oral drug delivery via nanocarriers
    • 

    corecore