4 research outputs found

    Phase-locking of time-delayed attosecond XUV pulse pairs

    Get PDF
    We present a setup for the generation of phase-locked attosecond extreme ultraviolet (XUV) pulse pairs. The attosecond pulse pairs are generated by high harmonic generation (HHG) driven by two phase-locked near-infrared (NIR) pulses that are produced using an actively stabilized Mach-Zehnder interferometer compatible with near-single cycle pulses. The attosecond XUV pulses can be delayed over a range of 400 fs with a sub-10-as delay jitter. We validate the precision and the accuracy of the setup by XUV optical interferometry and by retrieving the energies of Rydberg states of helium in an XUV pump–NIR probe photoelectron spectroscopy experiment

    Phase cycling of extreme ultraviolet pulse sequences generated in rare gases

    Get PDF
    The development of schemes for coherent nonlinear time-domain spectroscopy in the extreme-ultraviolet regime (XUV) has so far been impeded by experimental difficulties that arise at these short wavelengths. In this work we present a novel experimental approach, which facilitates the timing control and phase cycling of XUV pulse sequences produced by harmonic generation in rare gases. The method is demonstrated for the generation and high spectral resolution characterization of narrow-bandwidth harmonics (≈14  eV) in argon and krypton. Our technique simultaneously provides high phase stability and a pathway-selective detection scheme for nonlinear signals—both necessary prerequisites for all types of coherent nonlinear spectroscopy
    corecore