20 research outputs found

    Primary ChAdOx1 vaccination does not reactivate pre-existing, cross-reactive immunity

    Get PDF
    Currently available COVID-19 vaccines include inactivated virus, live attenuated virus, mRNA-based, viral vectored and adjuvanted protein-subunit-based vaccines. All of them contain the spike glycoprotein as the main immunogen and result in reduced disease severity upon SARS-CoV-2 infection. While we and others have shown that mRNA-based vaccination reactivates pre-existing, cross-reactive immunity, the effect of vector vaccines in this regard is unknown. Here, we studied cellular and humoral responses in heterologous adenovirus-vector-based ChAdOx1 nCOV-19 (AZ; Vaxzeria, AstraZeneca) and mRNA-based BNT162b2 (BNT; Comirnaty, BioNTech/Pfizer) vaccination and compared it to a homologous BNT vaccination regimen. AZ primary vaccination did not lead to measurable reactivation of cross-reactive cellular and humoral immunity compared to BNT primary vaccination. Moreover, humoral immunity induced by primary vaccination with AZ displayed differences in linear spike peptide epitope coverage and a lack of anti-S2 IgG antibodies. Contrary to primary AZ vaccination, secondary vaccination with BNT reactivated pre-existing, cross-reactive immunity, comparable to homologous primary and secondary mRNA vaccination. While induced anti-S1 IgG antibody titers were higher after heterologous vaccination, induced CD4(+) T cell responses were highest in homologous vaccinated. However, the overall TCR repertoire breadth was comparable between heterologous AZ-BNT-vaccinated and homologous BNT-BNT-vaccinated individuals, matching TCR repertoire breadths after SARS-CoV-2 infection, too. The reasons why AZ and BNT primary vaccination elicits different immune response patterns to essentially the same antigen, and the associated benefits and risks, need further investigation to inform vaccine and vaccination schedule development

    Immunological fingerprint in coronavirus disease-19 convalescents with and without post-COVID syndrome

    Get PDF
    BackgroundSymptoms lasting longer than 12  weeks after severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection are called post-coronavirus disease (COVID) syndrome (PCS). The identification of new biomarkers that predict the occurrence or course of PCS in terms of a post-viral syndrome is vital. T-cell dysfunction, cytokine imbalance, and impaired autoimmunity have been reported in PCS. Nevertheless, there is still a lack of conclusive information on the underlying mechanisms due to, among other things, a lack of controlled study designs.MethodsHere, we conducted a prospective, controlled study to characterize the humoral and cellular immune response in unvaccinated patients with and without PCS following SARS-CoV-2 infection over 7 months and unexposed donors.ResultsPatients with PCS showed as early as 6 weeks and 7 months after symptom onset significantly increased frequencies of SARS-CoV-2-specific CD4+ and CD8+ T-cells secreting IFNγ, TNF, and expressing CD40L, as well as plasmacytoid dendritic cells (pDC) with an activated phenotype. Remarkably, the immunosuppressive counterparts type 1 regulatory T-cells (TR1: CD49b/LAG-3+) and IL-4 were more abundant in PCS+.ConclusionThis work describes immunological alterations between inflammation and immunosuppression in COVID-19 convalescents with and without PCS, which may provide potential directions for future epidemiological investigations and targeted treatments

    Restriction of HIV-1 Escape by a Highly Broad and Potent Neutralizing Antibody

    Get PDF
    Broadly neutralizing antibodies (bNAbs) represent a promising approach to prevent and treat HIV-1 infection. However, viral escape through mutation of the HIV-1 envelope glycoprotein (Env) limits clinical applications. Here we describe 1-18, a new V_H1-46-encoded CD4 binding site (CD4bs) bNAb with outstanding breadth (97%) and potency (GeoMean IC₅₀ = 0.048 μg/mL). Notably, 1-18 is not susceptible to typical CD4bs escape mutations and effectively overcomes HIV-1 resistance to other CD4bs bNAbs. Moreover, mutational antigenic profiling uncovered restricted pathways of HIV-1 escape. Of most promise for therapeutic use, even 1-18 alone fully suppressed viremia in HIV-1-infected humanized mice without selecting for resistant viral variants. A 2.5-Å cryo-EM structure of a 1-18-BG505_(SOSIP.664) Env complex revealed that these characteristics are likely facilitated by a heavy-chain insertion and increased inter-protomer contacts. The ability of 1-18 to effectively restrict HIV-1 escape pathways provides a new option to successfully prevent and treat HIV-1 infection

    Highs and lows. Genetic susceptibility to daily events

    Get PDF
    Why people differ in their susceptibility to external events is essential to our understanding of personality, human development, and mental disorders. Genes explain a substantial portion of these differences. Specifically, genes influencing the serotonin system are hypothesized to be differential susceptibility factors, determining a person\u27s reactivity to both positive and negative environments. We tested whether genetic variation in the serotonin transporter (5-HTTLPR) is a differential susceptibility factor for daily events. Participants (N = 326, 77% female, mean age = 25, range = 17-36) completed smartphone questionnaires four times a day over four to five days, measuring stressors, uplifts, positive and negative affect. Affect was predicted from environment valence in the previous hour on a within-person level using three-level autoregressive linear mixed models. The 5-HTTLPR fulfilled all criteria of a differential susceptibility factor: Positive affect in carriers of the short allele (S) was less reactive to both uplifts and stressors, compared to homozygous carriers of the long allele (L/L). This pattern might reflect relative affective inflexibility in S-allele carriers. Our study provides insight into the serotonin system\u27s general role in susceptibility and highlights the need to assess the whole spectrum of naturalistic experiences. (DIPF/Orig.

    Oxytocin and the stress buffering effect of social company

    No full text
    Social relationships are a crucial determinant of both mental and physical health. This effect is partly due to social buffering of stress. Animal studies suggest that social buffering is mediated via the oxytocin system, while studies in humans are sparse and limited by the low ecological validity of laboratory settings. In the present study, participants (N\it N = 326) completed smartphone questionnaires four times a day over 4 to 5 days, measuring stressors, negative affect, and social context to assess social buffering. We found that under stress, participants reported a higher need for social company. Further, the impact of prior stressful events on momentary negative affect was attenuated by the perceived pleasantness of current social company. This social buffering effect was moderated by haplotypes of the oxytocin receptor gene, based on two well-described single nucleotide polymorphisms (rs2268498, rs53576). Effects were robust when controlling for gender and age, applying different data quality criteria, and even apparent in genotype-based analyses. Our findings demonstrate that social buffering and its modulation by oxytocin system characteristics have implications for life as lived outside the laboratory

    Highs and\it and lows

    No full text
    Why people differ in their susceptibility to external events is essential to our understanding of personality, human development, and mental disorders. Genes explain a substantial portion of these differences. Specifically, genes influencing the serotonin system are hypothesized to be differential susceptibility\textit {differential susceptibility} factors, determining a person's reactivity to both positive and\it and negative environments. We tested whether genetic variation in the serotonin transporter (5-HTTLPR)\textit {(5-HTTLPR)} is a differential susceptibility factor for daily events. Participants (N\it N = 326, 77% female, mean age = 25, range = 17–36) completed smartphone questionnaires four times a day over four to five days, measuring stressors, uplifts, positive and negative affect. Affect was predicted from environment valence in the previous hour on a within-person level using three-level autoregressive linear mixed models. The 5-HTTLPR\textit {5-HTTLPR} fulfilled all criteria of a differential susceptibility factor: Positive affect in carriers of the short allele (S) was less reactive to both uplifts and stressors, compared to homozygous carriers of the long allele (L/L). This pattern might reflect relative affective inflexibility in S-allele carriers. Our study provides insight into the serotonin system’s general role in susceptibility and highlights the need to assess the whole spectrum of naturalistic experiences

    Safe and effective pool testing for SARS-CoV-2 detection

    No full text
    Objectives: The global spread of SARS-CoV-2 is a serious public health issue. Large-scale surveillance screenings are crucial but can exceed test capacities. We (A) optimized test conditions and (B) implemented pool testing of respiratory swabs into SARS-CoV-2 diagnostics. Study design: (A) We determined the optimal pooling strategy and pool size. In addition, we measured the impact of vortexing prior to sample processing, compared a pipette-pooling method (by combining transport medium of several specimens) and a swab-pooling method (by combining several swabs into a test tube filled with PBS) as well as determined the sensitivities of three PCR assays. (B) Finally, we applied high-throughput pool testing for diagnostics. Results: (A) In a low prevalence setting, we defined a preferable pool size of ten in a two-stage hierarchical pool testing strategy. Vortexing of swabs (n = 33) increased cellular yield by a factor of 2.34. By comparing Ct-values of 16 pools generated with two different pooling strategies, pipette-pooling was more efficient compared to swab-pooling. Measuring dilution series of 20 SARS-CoV-2 positive samples in three PCR assays simultaneously revealed detection rates of 85% (assay I), 50% (assay II), and 95% (assay III) at a 1:100 dilution. (B) We systematically pooled 55,690 samples in a period of 44 weeks resulting in a reduction of 47,369 PCR reactions. Conclusions: For implementing pooling strategies into high-throughput diagnostics, we recommend utilizing a pipette-pooling method, performing sensitivity validation of the PCR assays used, and vortexing swabs prior to analyses. Pool testing for SARS-CoV-2 detection is feasible and effective in a low prevalence setting

    No substantial preexisting B cell immunity against SARS-CoV-2 in healthy adults

    No full text
    Preexisting immunity against SARS-CoV-2 may have critical implications for our understanding of COVID-19 susceptibility and severity. The presence and clinical relevance of a preexisting B cell immunity remain to be fully elucidated. Here, we provide a detailed analysis of the B cell immunity to SARS-CoV-2 in unexposed individuals. To this end, we extensively investigated SARS-CoV-2 humoral immunity in 150 adults sampled pre-pandemically. Comprehensive screening of donor plasma and purified IgG sampler, for bin Jing and neutralization in various functional assays revealed no substantial activity against SARS-CoV-2 but broad reactivity to endemic betacoronaviruses. Moreover, we analyzed antibody sequences of 8,174 putatively SARS-CoV-2-reactive B cells at a single cell level and generated and tested 158 monoclonal antibodies. None of these antibodies displayed relevant binding or neutralizing activity against SARS-CoV-2. Taken together, our results show no evidence of competent preexisting antibody and B cell immunity against SARS-CoV-2 in unexposed adults
    corecore