10 research outputs found

    Impact of improved attenuation correction on 18F-FDG PET/MR hybrid imaging of the heart.

    No full text
    PURPOSE:The aim of this study was to evaluate and quantify the effect of improved attenuation correction (AC) including bone segmentation and truncation correction on 18F-Fluordesoxyglucose cardiac positron emission tomography/magnetic resonance (PET/MR) imaging. METHODS:PET data of 32 cardiac PET/MR datasets were reconstructed with three different AC-maps (1. Dixon-VIBE only, 2. HUGE truncation correction and bone segmentation, 3. MLAA). The Dixon-VIBE AC-maps served as reference of reconstructed PET data. 17-segment short-axis polar plots of the left ventricle were analyzed regarding the impact of each of the three AC methods on PET quantification in cardiac PET/MR imaging. Non-AC PET images were segmented to specify the amount of truncation in the Dixon-VIBE AC-map serving as a reference. All AC-maps were evaluated for artifacts. RESULTS:Using HUGE + bone AC results in a homogeneous gain of ca. 6% and for MLAA 8% of PET signal distribution across the myocardium of the left ventricle over all patients compared to Dixon-VIBE AC only. Maximal relative differences up to 18% were observed in segment 17 (apex). The body volume truncation of -12.7 ± 7.1% compared to the segmented non-AC PET images using the Dixon-VIBE AC method was reduced to -1.9 ± 3.9% using HUGE and 7.8 ± 8.3% using MLAA. In each patient, a systematic overestimation in AC-map volume was observed when applying MLAA. Quantitative impact of artifacts showed regional differences up to 6% within single segments of the myocardium. CONCLUSIONS:Improved AC including bone segmentation and truncation correction in cardiac PET/MR imaging is important to ensure best possible diagnostic quality and PET quantification. The results exhibited an overestimation of AC-map volume using MLAA, while HUGE resulted in a more realistic body contouring. Incorporation of bone segmentation into the Dixon-VIBE AC-map resulted in homogeneous gain in PET signal distribution across the myocardium. The majority of observed AC-map artifacts did not significantly affect the quantitative assessment of the myocardium

    Improving the CT (140 kVp) to PET (511 keV) conversion in PET/MR Hardware Component Attenuation Correction

    No full text
    PurposeToday, attenuation correction (AC) of positron emission tomography/magnetic resonance (PET/MR) hardware components is performed by using an established method from PET/CT hybrid imaging. As shown in previous studies, the established mathematical conversion from computed tomography (CT) to PET attenuation coefficients may, however, lead to incorrect results in PET quantification when applied to AC of hardware components in PET/MR. The purpose of this study is to systematically investigate the attenuating properties of various materials and electronic components frequently used in the context of PET/MR hybrid imaging. The study, thus, aims at improving hardware component attenuation correction in PET/MR.Materials and methodsOverall, 38 different material samples were collected; a modular phantom was used to for CT, PET, and PET/MR scanning of all samples. Computed tomography‐scans were acquired with a tube voltage of 140 kVp to determine Hounsfield Units (HU). PET transmission scans were performed with 511 keV to determine linear attenuation coefficients (LAC) of all materials. The attenuation coefficients were plotted to obtain a HU to LAC correlation graph, which was then compared to two established conversions from literature. Hardware attenuation maps of the different materials were created and applied to PET data reconstruction following a phantom validation experiment. From these measurements, PET difference maps were calculated to validate and compare all three conversion methods.ResultsFor each material, the HU and corresponding LAC could be determined and a bi‐linear HU to LAC conversion graph was derived. The corresponding equation was urn:x-wiley:00942405:media:mp14091:mp14091-math-0001 . While the two established conversions lead to a mean quantification PET bias of 4.69% ± 0.27% and −2.84% ± 0.72% in a phantom experiment, PET difference measurements revealed only 0.5 % bias in PET quantification when applying the new conversion resulting from this study.ConclusionsAn optimized method for the conversion of CT to PET attenuation coefficients has been derived by systematic measurement of 38 different materials. In contrast to established methods, the new conversion also considers highly attenuating materials, thus improving attenuation correction of hardware components in PET/MR hybrid imaging

    Towards fast whole-body PET/MR: Investigation of PET image quality versus reduced PET acquisition times.

    No full text
    PURPOSE:The trend towards faster acquisition protocols in whole-body positron emission tomography/magnetic resonance (PET/MR) arises the question of whether short PET data acquisition protocols in a whole-body multi-station context allow for reduced PET acquisition times while providing adequate PET image quality and accurate quantification parameters. The study goal is to investigate how reducing PET acquisition times affects PET image quality and quantification in whole-body PET/MR in patients with oncologic findings. METHODS:Fifty-one patients with different oncologic findings underwent a clinical whole-body 18F-Fluorodeoxyglucose PET/MR examination. PET data was reconstructed with 4, 3, 2, and 1 min/bed time intervals for each patient to simulate the effect of reduced PET acquisition times. The 4-minute PET reconstructions served as reference standard. All whole-body PET data sets were analyzed regarding image quality, lesion detectability, PET quantification and standardized uptake values. RESULTS:A total of 91 lesions were detected in the 4-minute PET reconstructions. The same number of congruent lesions was also noticed in the 3 and 2 minutes-per-bed (mpb) reconstructed images. A total of 2 lesions in 2 patients was not detected in the 1 minute PET data reconstructions due to poor image quality. Image noise in the blood pool increased from 22.2% (4 mpb) to 42.1% (1 mpb). Signal-to-noise ratio declined with shorter timeframes from 13.1 (4 mpb) to 9.3 (1 mpb). SUVmean and SUVmax showed no significant changes between 4 and 1 mpb reconstructed timeframes. CONCLUSIONS:Reconstruction of PET data with different time intervals has shown that 2 minutes acquisition time per bed position instead of 4 minutes is sufficient to provide accurate lesion detection and adequate image quality in a clinical setting, despite the trends to lower image quality with shorter PET acquisition times. This provides latitude for potential reduction of PET acquisition times in fast PET/MR whole-body examinations

    Evaluation of improved attenuation correction in whole-body PET/MR on patients with bone metastasis using various radiotracers

    No full text
    Purpose!#!This study evaluates the quantitative effect of improved MR-based attenuation correction (AC), including bone segmentation and the HUGE method for truncation correction in PET/MR whole-body hybrid imaging specifically of oncologic patients with bone metastasis and using various radiotracers.!##!Methods!#!Twenty-three patients that underwent altogether 28 whole-body PET/MR examinations with findings of bone metastasis were included in this study. Different radiotracers (!##!Results!#!Overall, 69 bone lesions were detected and evaluated. The mean increase in relative difference over all 69 lesions in SUV!##!Conclusion!#!Improved MR-based AC, including bone segmentation and HUGE truncation correction in whole-body PET/MR on patients with bone lesions and using various radiotracers, is important to ensure best possible diagnostic image quality and accurate PET quantification. The HUGE method for truncation correction based on MR worked robust and results in realistic body contouring, independent of the radiotracers used

    Intra-Individual Comparison of 124I-PET/CT and 124I-PET/MR Hybrid Imaging of Patients with Resected Differentiated Thyroid Carcinoma: Aspects of Attenuation Correction

    No full text
    Background: This study evaluates the quantitative differences between 124-iodine (I) positron emission tomography/computed tomography (PET/CT) and PET/magnetic resonance imaging (PET/MR) in patients with resected differentiated thyroid carcinoma (DTC). Methods: N = 43 124I PET/CT and PET/MR exams were included. CT-based attenuation correction (AC) in PET/CT and MR-based AC in PET/MR with bone atlas were compared concerning bone AC in the head-neck region. AC-map artifacts (e.g., dentures) were noted. Standardized uptake values (SUV) were measured in lesions in each PET data reconstruction. Relative differences in SUVmean were calculated between PET/CT and PET/MR with bone atlas. Results: Overall, n = 111 124I-avid lesions were detected in all PET/CT, while n = 132 lesions were detected in PET/MR. The median in SUVmean for n = 98 congruent lesions measured in PET/CT was 12.3. In PET/MR, the median in SUVmean was 16.6 with bone in MR-based AC. Conclusions: 124I-PET/CT and 124I-PET/MR hybrid imaging of patients with DTC after thyroidectomy provides overall comparable quantitative results in a clinical setting despite different patient positioning and AC methods. The overall number of detected 124I-avid lesions was higher for PET/MR compared to PET/CT. The measured average SUVmean values for congruent lesions were higher for PET/MR

    Imatinib dose reduction in major molecular response of chronic myeloid leukemia: results from the German Chronic Myeloid Leukemia-Study IV

    No full text
    Standard first-line therapy of chronic myeloid leukemia is treatment with imatinib. In the randomized German Chronic Myeloid Leukemia-Study IV, more potent BCR-ABL inhibition with 800 mg ('high-dose') imatinib accelerated achievement of a deep molecular remission. However, whether and when a de-escalation of the dose intensity under high-dose imatinib can be safely performed without increasing the risk of losing deep molecular response is unknown. To gain insights into this clinically relevant question, we analyzed the outcome of imatinib dose reductions from 800 mg to 400 mg daily in the Chronic Myeloid Leukemia-Study IV. Of the 422 patients that were randomized to the 800 mg arm, 68 reduced imatinib to 400 mg after they had achieved at least a stable major molecular response. Of these 68 patients, 61 (90%) maintained major molecular remission on imatinib at 400 mg. Five of the seven patients who lost major molecular remission on the imatinib standard dose regained major molecular remission while still on 400 mg imatinib. Only two of 68 patients had to switch to more potent kinase inhibition to regain major molecular remission. Importantly, the lengths of the intervals between imatinib high-dose treatment before and after achieving major molecular remission were associated with the probabilities of maintaining major molecular remission with the standard dose of imatinib. Taken together, the data support the view that a deep molecular remission achieved with high-dose imatinib can be safely maintained with standard dose in most patients
    corecore