157 research outputs found

    Electrodeposition in capillaries: bottom-up micro- and nanopatterning of functional materials on conductive substrates

    Get PDF
    A cost-effective and versatile methodology for bottom-up patterned growth of inorganic and metallic materials on the micro- and nanoscale is presented. Pulsed electrodeposition was employed to deposit arbitrary patterns of Ni, ZnO, and FeO(OH) of high quality, with lateral feature sizes down to 200–290 nm. The pattern was defined by an oxygen plasma-treated patterned PDMS mold in conformal contact with a conducting substrate and immersed in an electrolyte solution, so that the solid phases were deposited from the solution in the channels of the patterned mold. It is important that the distance between the entrance of the channels, and the location where deposition is needed, is kept limited. The as-formed patterns were characterized by high resolution scanning electron microscope, energy-dispersive X-ray analysis, atomic force microscopy, and X-ray diffraction

    Preparation and Use of Photocatalytically Active Segmented Ag|ZnO and Coaxial TiO2-Ag Nanowires Made by Templated Electrodeposition

    Get PDF
    Photocatalytically active nanostructures require a large specific surface area with the presence of many catalytically active sites for the oxidation and reduction half reactions, and fast electron (hole) diffusion and charge separation. Nanowires present suitable architectures to meet these requirements. Axially segmented Ag|ZnO and radially segmented (coaxial) TiO2-Ag nanowires with a diameter of 200 nm and a length of 6-20 ”m were made by templated electrodeposition within the pores of polycarbonate track-etched (PCTE) or anodized aluminum oxide (AAO) membranes, respectively. In the photocatalytic experiments, the ZnO and TiO2 phases acted as photoanodes, and Ag as cathode. No external circuit is needed to connect both electrodes, which is a key advantage over conventional photo-electrochemical cells. For making segmented Ag|ZnO nanowires, the Ag salt electrolyte was replaced after formation of the Ag segment to form a ZnO segment attached to the Ag segment. For making coaxial TiO2-Ag nanowires, a TiO2 gel was first formed by the electrochemically induced sol-gel method. Drying and thermal annealing of the as-formed TiO2 gel resulted in the formation of crystalline TiO2 nanotubes. A subsequent Ag electrodeposition step inside the TiO2 nanotubes resulted in formation of coaxial TiO2-Ag nanowires. Due to the combination of an n-type semiconductor (ZnO or TiO2) and a metal (Ag) within the same nanowire, a Schottky barrier was created at the interface between the phases. To demonstrate the photocatalytic activity of these nanowires, the Ag|ZnO nanowires were used in a photocatalytic experiment in which H2 gas was detected upon UV illumination of the nanowires dispersed in a methanol/water mixture. After 17 min of illumination, approximately 0.2 vol% H2 gas was detected from a suspension of ~0.1 g of Ag|ZnO nanowires in a 50 ml 80 vol% aqueous methanol solution

    MoS2 Nanocube structures as catalysts for electrochemical H2 evolution from acidic aqueous solutions

    Get PDF
    Core–shell PMMA–Au nanocube structures made by a combination of nanoimprint lithography and sidewall deposition were used as template for electrodeposition of MoS2, Ni, and Pt. Linear sweep voltammetry experiments obtained in an aqueous solution containing 0.29 M H2SO4 (pH 0.24) showed that the onset potential of the core–shell–shell PMMA–Au–MoS2 nanocube electrode for the hydrogen evolution reaction (HER) was shifted to the positive direction (i.e., requiring a lower overpotential) by 20–40 mV compared to planar MoS2 films. This indicates that the nanocube electrodes have a significantly increased HER activity, which is probably because of a higher density of catalytically active edge sites available at the nanocube surface. It was also found that the HER activity initially increased with increasing MoS2 deposition time, but decreased after deposition for 60 min because the edges of the nanocubes became rounded, thereby decreasing the number of active edge sites. By depositing Ni and Pt on top of PMMA–Au nanocubes, it was shown that this method can also be used for the synthesis of nanocube structures with varying compositions

    Templated electrodeposition of Ag7NO11 nanowires with very high oxidation states of silver

    Get PDF
    The templated electrodeposition of 200 nm diameter nanowires of the argentic oxynitrate Ag(Ag3O4)2NO3 phase is reported. Their high surface-to-volume ratio and the high average oxidation state of Ag make these wires promising candidates for nanoscale redox processes in which both a high volumetric charge density and a high discharge rate are required. The antibiotic activity of these nanowires was demonstrated by inhibiting the growth of Bacillus cereus bacteria

    Patterning functional materials using channel diffused plasma-etched self-assembled monolayer templates

    Get PDF
    A simple and cost-effective methodology for large-area micrometer-scale patterning of a wide range of metallic and oxidic functional materials is presented. Self-assembled monolayers (SAM) of alkyl thiols on Au were micropatterned by channel-diffused oxygen plasma etching, a method in which selected areas of SAM were protected from plasma oxidation via a soft lithographic stamp. The patterned SAMs were used as templates for site-selective electrodeposition, electroless deposition and solution-phase deposition of functional materials such as ZnO, Ni, Ag thin films, and ZnO nanowires. The patterned SAMs and functional materials were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), and tunneling AFM (TUNA).\u

    Nanopatterning of functional materials by gas phase pattern deposition of self assembled molecular thin films in combination with electrodeposition

    Get PDF
    We present a general methodology to pattern functional materials on the nanometer scale using self-assembled molecular templates on conducting substrates. A soft lithographic gas phase edge patterning process using poly(dimethylsiloxane) molds was employed to form electrically isolating organosilane patterns of a few nanometer thickness and a line width that could be tuned by varying the time of deposition. Electrodeposition was employed to deposit patterns of Ni and ZnO on these prepatterned substrates. Deposition occurred only on patches of the substrate where no organosilane monolayer was present. The process is simple, inexpensive, and scalable to large areas. We achieved formation of metallic and oxide material patterns with a lateral resolution of 80 n

    Dielectrophoretic alignment of metal and metal oxide nanowires and nanotubes: A universal set of parameters for bridging prepatterned microelectrodes

    Get PDF
    Nanowires and nanotubes were synthesized from metals and metal oxides using templated cathodic electrodeposition. With templated electrodeposition, small structures are electrodeposited using a template that is the inverse of the final desired shape. Dielectrophoresis was used for the alignment of the as-formed nanowires and nanotubes between prepatterned electrodes. For reproducible nanowire alignment, a universal set of dielectrophoresis parameters to align any arbitrary nanowire material was determined. The parameters include peak-to-peak potential and frequency, thickness of the silicon oxide layer, grounding of the silicon substrate, and nature of the solvent medium used. It involves applying a field with a frequency >10(5) Hz, an insulating silicon oxide layer with a thickness of 2.5 mu m or more, grounding of the underlying silicon substrate, and the use of a solvent medium with a low dielectric constant. In our experiments, we obtained good results by using a peak-to-peak potential of 2.1 V at a frequency of 1.2 x 10(5) Hz. Furthermore, an indirect alignment technique is proposed that prevents short circuiting of nanowires after contacting both electrodes. After alignment, a considerably lower resistivity was found for ZnO nanowires made by templated electrodeposition (2.2-3.4 x 10(-3) Omega m) compared to ZnO nanorods synthesized by electrodeposition (10 Omega m) or molecular beam epitaxy (MBE) (500 Omega m). (C) 2010 Elsevier Inc. All rights reserved

    Atomic layer deposition of cobalt phosphide for efficient water splitting

    Get PDF
    Transition‐metal phosphides (TMP) prepared by atomic layer deposition (ALD) are reported for the first time. Ultrathin Co‐P films were deposited by using PH3 plasma as the phosphorus source and an extra H2 plasma step to remove excess P in the growing films. The optimized ALD process proceeded by self‐limited layer‐by‐layer growth, and the deposited Co‐P films were highly pure and smooth. The Co‐P films deposited via ALD exhibited better electrochemical and photoelectrochemical hydrogen evolution reaction (HER) activities than similar Co‐P films prepared by the traditional post‐phosphorization method. Moreover, the deposition of ultrathin Co‐P films on periodic trenches was demonstrated, which highlights the broad and promising potential application of this ALD process for a conformal coating of TMP films on complex three‐dimensional (3D) architectures
    • 

    corecore