5 research outputs found
An interleukin-1 polymorphism additionally intensified by atopy as prognostic factor for aseptic non-mechanical complications in metal knee and hip arthroplasty
Background: In contrast to infection or mechanical issues joint replacement failure following inflammatory adverse reactions is poorly understood.
Objective: To assess the association of IL-1β polymorphisms and history of allergy with aseptic non-mechanical complications following arthroplasty.
Methods: In 102 patients with aseptic non-mechanically caused symptomatic knee or hip arthroplasty (SA) and 93 patients with asymptomatic arthroplasty (AA) questionnaire-based history, patch test with at least standard series, lymphocyte transformation test (LTT) with nickel, cobalt and chromium and interleukin-1 polymorphism analysis were done. Three polymorphisms of the IL1B gene [IL-1b -3954 (rs1143634), IL-1b -511 (rs16944) and IL-1b -31 (rs1143627)] and one polymorphism of the IL1RN gene [IL1RN intron 2, variable number of tandem repeats, VNTR (rs2234663)] were assessed by PCR and gel electrophoresis.
Results: We found no significant difference in smoking history and atopy but 25% versus 10% of self-reported metal allergy in SA versus AA; the patch test (respective, LTT) for metal sensitivity was more often positive in SA patients. The allele 498 bp of the IL1RN polymorphism occurred significantly more often in the SA group (37% versus 11%; p < 0.0001). Upon additional presence of atopy, the difference was even greater (60% vs 10%) (p < 0.000001). There was no association of IL-1 polymorphisms with metal allergy.
Conclusion: The IL1RN VNTR allele 498 bp was strongly associated with SA. In patients with a history of atopy, presence of the IL1RN VNTR allele 498 bp led to a four-fold higher SA prevalence compared to patients without this allele
Mcl-1 Antisense Therapy Chemosensitizes Human Melanoma in a SCID Mouse Xenotransplantation Model
It is well established that high expression of the antiapoptotic Bcl-2 family proteins Bcl-2 and Bcl-xL can significantly contribute to chemoresistance in a number of human malignancies. Much less is known about the role the more recently described Bcl-2 family member Mcl-1 might play in tumor biology and resistance to chemotherapy. Using an antisense strategy, we here address this issue in melanoma, a paradigm of a treatment-resistant malignancy. After in vitro proof of principle supporting an antisense mechanism of action with specific reduction of Mcl-1 protein as a consequence of nuclear uptake of the Mcl-1 antisense oligonucleotides employed, antisense and universal control oligonucleotides were administered systemically in combination with dacarbazine in a human melanoma SCID mouse xenotransplantation model. Dacarbazine, available now for more than three decades, still remains the most active single agent for treatment of advanced melanoma. Mcl-1 antisense oligonucleotides specifically reduced target protein expression as well as the apoptotic threshold of melanoma xenotransplants. Combined Mcl-1 antisense oligonucleotide plus dacarbazine treatment resulted in enhanced tumor cell apoptosis and led to a significantly reduced mean tumor weight (mean 0.16 g, 95% confidence interval 0.08–0.26) compared to the tumor weight in universal control oligonucleotide plus dacarbazine treated animals (mean 0.35 g, 95% confidence interval 0.2–0.44) or saline plus dacarbazine treated animals (mean 0.39 g, 95% confidence interval 0.25–0.53). We thus show that Mcl-1 is an important factor contributing to the chemoresistance of human melanoma in vivo. Antisense therapy against the Mcl-1 gene product, possibly in combination with antisense strategies targeting other antiapoptotic Bcl-2 family members, appears to be a rational and promising approach to help overcome treatment resistance of malignant melanoma