156 research outputs found
Iterleukin 1 alpha is a marker of endothelial cellular senescent
BACKGROUND: The functional changes associated with endothelial senescence may be involved in human aging and age-related vascular disorders. Since the inflammatory cytokine interleukin (IL-)1 inhibits endothelial growth, we evaluated the expression of IL-1α, IL-1β and their antagonist, the IL-1 receptor antagonist (IL-1ra), in endothelial in vitro senescence and quiescence. We also examined the expression of IL-1α in human senescent and progeric fibroblasts. RESULTS: We found that the overexpression of IL-1α specifically characterizes endothelial senescence. No modulation of this cytokine was observed in endothelial quiescence and in senescent or progeric human fibroblasts. The expression of IL-1β and IL-1ra was also assessed and found not to be affected by senescence. CONCLUSION: Our results indicate that a dysfunction of the cytokine network associates with aging and point to a specific role of IL-1α in endothelial senescence
Online Legal Research: A Practical Guide for Business Students and Professionals
This article is intended to be a guide to business students and professionals in locating and assessing online legal information in the United States, providing a brief summary of primary and secondary sources of law and distinguishing between state and federal law as a backdrop to legal research. Researchers are encouraged to perform an online search with a tailored list of descriptive search terms. When evaluating online search results, a researcher should identify quality information based on its authority, accuracy, timeliness, objectivity, and coverage. If possible, online researchers should prefer government websites that provide timely, relevant information when retrieving online legal information. A researcher may begin an online search using secondary sources of law, but a successful search should conclude with the interpretation of primary sources of law
EDF-1, a novel gene product down-regulated in human endothelial cell differentiation.
Abstract Endothelial cell differentiation is a crucial step in angiogenesis. Here we report the identification of EDF-1, a novel gene product that is down-regulated when endothelial cells are induced to differentiate in vitro. The cDNA encodingEDF-1 was isolated by RNA fingerprinting from human endothelial cells exposed to human immunodeficiency virus type 1 Tat, a viral protein known to be angiogenic. The deduced amino acid sequence of EDF-1 encodes a basic intracellular protein of 148 amino acids that is homologous to MBF1 (multiprotein-bridgingfactor 1) of the silkworm Bombyx mori and to H7, which is implicated in the early developmental events of Dictyostelium discoideum. Interestingly, human immunodeficiency virus type 1 Tat, which affects endothelial functions, and the phorbol ester 12-O-tetradecanoylphorbol-13-acetate and culture on fibrin gels, which promote endothelial differentiationin vitro, all down-regulate EDF-1 expression both at the RNA and protein levels. In addition, the inhibition of EDF-1 translation by an antisense anti-EDF-1 construct results in the inhibition of endothelial cell growth and in the transition from a nonpolar cobblestone phenotype to a polar fibroblast-like phenotype. These data suggest that EDF-1 may play a role in the regulation of human endothelial cell differentiation
The impact of microgravity and hypergravity on endothelial cells
The endothelial cells (ECs), which line the inner surface of vessels, play a fundamental role in maintaining vascular integrity and tissue homeostasis, since they regulate local blood flow and other physiological processes. ECs are highly sensitive to mechanical stress, including hypergravity and microgravity. Indeed, they undergo morphological and functional changes in response to alterations of gravity. In particular microgravity leads to changes in the production and expression of vasoactive and inflammatory mediators and adhesion molecules, which mainly result from changes in the remodelling of the cytoskeleton and the distribution of caveolae. These molecular modifications finely control cell survival, proliferation, apoptosis, migration, and angiogenesis. This review summarizes the state of the art on how microgravity and hypergravity affect cultured ECs functions and discusses some controversial issues reported in the literature
Association of candidate pharmacogenetic markers with platinum-induced ototoxicity:PanCareLIFE dataset
Genetic association studies suggest a genetic predisposi- tion for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase ( TPMT ) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The PanCareLIFE cross- sectional cohort study evaluated the genetic associations in a large pan-European population and assessed the diagnos- tic accuracy of the genetic markers. 1,112 pediatric cancer survivors who had provided biomaterial for genotyping were screened for participation in the pharmacogenetic association study. 900 participants qualified for inclusion. Based on the assessment of original audiograms, patients were assigned to three phenotype categories: no, minor, and clinically relevant hearing loss. Fourteen variants in eleven candidate genes ( ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1, and ACYP2 ) were genotyped. The genotype and phenotype data represent a resource for conducting meta- analyses to derive a more precise pooled estimate of the ef- fects of genes on the risk of hearing loss due to platinum treatment
Association of candidate pharmacogenetic markers with platinum-induced ototoxicity: PanCareLIFE dataset
Genetic association studies suggest a genetic predisposition for cisplatin-induced ototoxicity. Among other candidate genes, thiopurine methyltransferase (TPMT) is considered a critical gene for susceptibility to cisplatin-induced hearing loss in a pharmacogenetic guideline. The PanCareLIFE cross-sectional cohort study evaluated the genetic associations in a large pan-European population and assessed the diagnostic accuracy of the genetic markers. 1,112 pediatric cancer survivors who had provided biomaterial for genotyping were screened for participation in the pharmacogenetic association study. 900 participants qualified for inclusion. Based on the assessment of original audiograms, patients were assigned to three phenotype categories: no, minor, and clinically relevant hearing loss. Fourteen variants in eleven candidate genes (ABCC3, OTOS, TPMT, SLC22A2, NFE2L2, SLC16A5, LRP2, GSTP1, SOD2, WFS1, and ACYP2) were genotyped. The genotype and phenotype data represent a resource for conducting meta-analyses to derive a more precise pooled estimate of the effects of genes on the risk of hearing loss due to platinum treatment
- …