17,927 research outputs found
Cluster induced quenching of galaxies in the massive cluster XMMXCSJ2215.9-1738 at z~1.5 traced by enhanced metallicities inside half R200
(Abridged) We explore the massive cluster XMMXCSJ2215.9-1738 at z~1.5 with
KMOS spectroscopy of Halpha and [NII] covering a region that corresponds to
about one virial radius. Using published spectroscopic redshifts of 108
galaxies in and around the cluster we computed the location of galaxies in the
projected velocity vs. position phase-space to separate our cluster sample into
a virialized region of objects accreted longer ago (roughly inside half R200)
and a region of infalling galaxies. We measured oxygen abundances for ten
cluster galaxies with detected [NII] lines in the individual galaxy spectra and
compared the MZR of the galaxies inside half R200 with the infalling galaxies
and a field sample at similar redshifts. We find that the oxygen abundances of
individual z~1.5 star-forming cluster galaxies inside half R200 are comparable,
at the respective stellar mass, to the higher local SDSS metallicity values. We
find that the [NII]/Halpha line ratios inside half R200 are higher by 0.2 dex
and that the resultant metallicities of the galaxies in the inner part of the
cluster are higher by about 0.1 dex, at a given mass, than the metallicities of
infalling galaxies and of field galaxies at z~1.5. The enhanced metallicities
of cluster galaxies at z~1.5 inside half R200 indicate that the density of the
ICM in this massive cluster becomes high enough toward the cluster center such
that the ram pressure exceeds the restoring pressure of the hot gas reservoir
of cluster galaxies. This can remove the gas reservoir initiating quenching;
although the galaxies continue to form stars, albeit at slightly lower rates,
using the available cold gas in the disk which is not stripped.Comment: Accepted for publication in A&
Systematic study of d-wave superconductivity in the 2D repulsive Hubbard model
The cluster size dependence of superconductivity in the conventional
two-dimensional Hubbard model, commonly believed to describe high-temperature
superconductors, is systematically studied using the Dynamical Cluster
Approximation and Quantum Monte Carlo simulations as cluster solver. Due to the
non-locality of the d-wave superconducting order parameter, the results on
small clusters show large size and geometry effects. In large enough clusters,
the results are independent of the cluster size and display a finite
temperature instability to d-wave superconductivity.Comment: 4 pages, 3 figures; updated with version published in PRL; added
values of Tc obtained from fit
EIT ground-state cooling of long ion strings
Electromagnetically-induced-transparency (EIT) cooling is a ground-state
cooling technique for trapped particles. EIT offers a broader cooling range in
frequency space compared to more established methods. In this work, we
experimentally investigate EIT cooling in strings of trapped atomic ions. In
strings of up to 18 ions, we demonstrate simultaneous ground state cooling of
all radial modes in under 1 ms. This is a particularly important capability in
view of emerging quantum simulation experiments with large numbers of trapped
ions. Our analysis of the EIT cooling dynamics is based on a novel technique
enabling single-shot measurements of phonon numbers, by rapid adiabatic passage
on a vibrational sideband of a narrow transition
Near-Infrared Spectroscopy of 0.4<z<1.0 CFRS Galaxies: Oxygen Abundances, SFRs and Dust
Using new J-band VLT-ISAAC and Keck-NIRSPEC spectroscopy, we have measured
Halpha and [NII] line fluxes for 0.47<z<0.92 CFRS galaxies which have [OII],
Hbeta and [OIII]a line fluxes available from optical spectroscopy, to
investigate how the properties of the star forming gas in galaxies evolve with
redshift. We derive the extinction and oxygen abundances for the sample using a
method based on a set of ionisation parameter and oxygen abundance diagnostics,
simultaneously fitting the [OII], Hbeta,[OIII], Halpha, and [NII] line fluxes.
The individual reddening measurements allow us to accurately correct the
Halpha-based star formation rate (SFR) estimates for extinction. Our most
salient conclusions are: a) in all 30 CFRS galaxies the source of gas
ionisation is not due to AGN activity; b) we find a range of 0<AV<3, suggesting
that it is important to determine the extinction for every single galaxy in
order to reliably measure SFRs and oxygen abundances in high redshift galaxies;
c) high values of [NII]/Halpha >0.1 for most (but not all) of the CFRS galaxies
indicate that they lie on the high-metallicity branch of the R23 calibration;
d) about one third of the 0.47<z<0.92 CFRS galaxies in our sample have lower
metallicities than local galaxies with similar luminosities and star formation
rates; e) comparison with a chemical evolution model indicates that these low
metallicity galaxies are unlikely to be the progenitors of metal-poor dwarf
galaxies at z~0.Comment: Accepted for publication in the Astrophysical Journa
Dynamics and Scaling of 2D Polymers in a Dilute Solution
The breakdown of dynamical scaling for a dilute polymer solution in 2D has
been suggested by Shannon and Choy [Phys. Rev. Lett. {\bf 79}, 1455 (1997)].
However, we show here both numerically and analytically that dynamical scaling
holds when the finite-size dependence of the relevant dynamical quantities is
properly taken into account. We carry out large-scale simulations in 2D for a
polymer chain in a good solvent with full hydrodynamic interactions to verify
dynamical scaling. This is achieved by novel mesoscopic simulation techniques
CLASH-VLT: Strangulation of cluster galaxies in MACSJ0416.1-2403 as seen from their chemical enrichment
(abridged) We explore the Frontier Fields cluster MACS J0416.1-2403 at
z=0.3972 with VIMOS/VLT spectroscopy from the CLASH-VLT survey covering a
region which corresponds to almost three virial radii. We measure fluxes of 5
emission lines of 76 cluster members enabling us to unambiguously derive O/H
gas metallicities, and also SFRs from Halpha. For intermediate massses we find
a similar distribution of cluster and field galaxies in the MZR and mass vs.
sSFR diagrams. Bulge-dominated cluster galaxies have on average lower sSFRs and
higher O/Hs compared to their disk-dominated counterparts. We use the location
of galaxies in the projected velocity vs. position phase-space to separate our
cluster sample into a region of objects accreted longer time ago and a region
of recently accreted and infalling galaxies. We find a higher fraction of
accreted metal-rich galaxies (63%) compared to the fraction of 28% of
metal-rich galaxies in the infalling regions. Intermediate mass galaxies
falling into the cluster for the first time are found to be in agreement with
predictions of the fundamental metallicity relation. In contrast, for already
accreted star-forming galaxies of similar masses, we find on average
metallicities higher than predicted by the models. This trend is intensified
for accreted cluster galaxies of the lowest mass bin, that display
metallicities 2-3 times higher than predicted by models with primordial gas
inflow. Environmental effects therefore strongly influence gas regulations and
control gas metallicities of log(M/Msun)<10.2 (Salpeter IMF) cluster galaxies.
We also investigate chemical evolutionary paths of model galaxies with and
without inflow of gas showing that strangulation is needed to explain the
higher metallicities of accreted cluster galaxies. Our results favor a
strangulation scenario in which gas inflow stops for log(M/Msun)<10.2 galaxies
when accreted by the cluster.Comment: Version better matched to the published version, including table with
observed and derived quantities for the 76 cluster galaxie
RHABDOMYOLYSIS INDUCED BY ANAESTHESIA WITH INTRAOPERATIVE CARDIAC ARREST
A 9-year-old boy undergoing anaesthesia including suxamethonium and halothane suffered cardiac arrest on two occasions. Clinical and laboratory examination subsequently showed that the patient had suffered from acute rhabdomyolysis. The eventual recovery was satisfactor
- …