67 research outputs found

    Cortico-cortical stimulation and robot-assisted therapy (CCS and RAT) for upper limb recovery after stroke: study protocol for a randomised controlled trial

    Get PDF
    Background: Since birth, during the exploration of the environment to interact with objects, we exploit both the motor and sensory components of the upper limb (UL). This ability to integrate sensory and motor information is often compromised following a stroke. However, to date, rehabilitation protocols are focused primarily on recovery of motor function through physical therapies. Therefore, we have planned a clinical trial to investigate the effect on functionality of UL after a sensorimotor transcranial stimulation (real vs sham) in add-on to robot-assisted therapy in the stroke population. Methods: A randomised double-blind controlled trial design involving 32 patients with a single chronic stroke (onset > 180 days) was planned. Each patient will undergo 15 consecutive sessions (5 days for 3 weeks) of paired associative stimulation (PAS) coupled with UL robot-assisted therapy. PAS stimulation will be administered using a bifocal transcranial magnetic stimulator (TMS) on the posterior-parietal cortex and the primary motor area (real or sham) of the lesioned hemisphere. Clinical, kinematics and neurophysiological changes will be evaluated at the end of protocol and at 1-month follow-up and compared with baseline. The Fugl-Meyer assessment scale will be the primary outcome. Secondly, kinematic variables will be recorded during the box-and-block test and reaching tasks using video analysis and inertial sensors. Single pulse TMS and electroencephalography will be used to investigate the changes in local cortical reactivity and in the interconnected areas. Discussion: The presented trial shall evaluate with a multimodal approach the effects of sensorimotor network stimulation applied before a robot-assisted therapy training on functional recovery of the upper extremity after stroke. The combination of neuromodulation and robot-assisted therapy can promote an increase of cortical plasticity of sensorimotor areas followed by a clinical benefit in the motor function of the upper limb. Trial registration: ClinicalTrials.gov NCT05478434. Registered on 28 Jul 2022

    Individual Differences, Economic Stability, and Fear of Contagion as Risk Factors for PTSD Symptoms in the COVID-19 Emergency

    Get PDF
    On January 30th 2020, the World Health Organization (WHO) declared the COVID-19 pandemic a Public Health Emergency of International Concern (PHEIC). Italy has been one of the most affected countries in the world. To contain further spread of the virus, the Italian government has imposed an unprecedented long-period lockdown for the entire country. This dramatic scenario may have caused a strong psychological distress, with potential negative long-term mental health consequences. The aim of the present study is to report the prevalence of high psychological distress due to the COVID-19 pandemic on the general population, especially considering that this aspect is consistently associated with PTSD symptoms. Furthermore, the present study aims to identify the risk factors for high PTSD symptoms, including individual differences and subjective perception of both economic and psychological aspects. We administered an online survey to 1253 participants during the peak period of the contagion in Italy. A logistic regression on the Impact of Event Scale – Revised (IES-R) scores was used to test the risk factors that predict the possibility to develop PTSD symptoms due to the COVID-19 pandemic. Gender (female), lower perceived economic stability, higher neuroticism, and fear and consequences of contagion were predictors of high PTSD symptomatology. The results, highlighted in the present study, extend our understanding of the COVID-19 pandemic’s impact on the population’s mental health, by identifying individuals at high-risk of developing PTSD. This may help with the implementation of specific protocols to prevent the possibility of developing symptoms of PTSD in target populations

    Regional Precuneus Cortical Hyperexcitability in Alzheimer's Disease Patients

    Get PDF
    Objective: Neuronal excitation/inhibition (E/I) imbalance is a potential cause of neuronal network malfunctioning in Alzheimer's disease (AD), contributing to cognitive dysfunction. Here, we used a novel approach combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG) to probe cortical excitability in different brain areas known to be directly involved in AD pathology. Methods: We performed TMS-EEG recordings targeting the left dorsolateral prefrontal cortex (l-DLPFC), the left posterior parietal cortex (l-PPC), and the precuneus (PC) in a large sample of patients with mild-to-moderate AD (n = 65) that were compared with a group of age-matched healthy controls (n = 21). Results: We found that patients with AD are characterized by a regional cortical hyperexcitability in the PC and, to some extent, in the frontal lobe, as measured by TMS-evoked potentials. Notably, cortical excitability assessed over the l-PPC was comparable between the 2 groups. Furthermore, we found that the individual level of PC excitability was associated with the level of cognitive impairment, as measured with Mini-Mental State Examination, and with corticospinal fluid levels of Aβ42 . Interpretation: Our data provide novel evidence that precuneus cortical hyperexcitability is a key feature of synaptic dysfunction in patients with AD. The current results point to the combined approach of TMS and EEG as a novel promising technique to measure hyperexcitability in patients with AD. This index could represent a useful biomarker to stage disease severity and evaluate response to novel therapies. ANN NEUROL 2022

    Schwinger Model Green functions with topological effects

    Full text link
    The fermion propagator and the 4-fermion Green function in the massless QED2 are explicitly found with topological effects taken into account. The corrections due to instanton sectors k=+1,-1, contributing to the propagator, are shown to be just the homogenous terms admitted by the Dyson-Schwinger equation for S. In the case of the 4-fermion function also sectors k=+2,-2 are included into consideration. The quark condensates are then calculated and are shown to satisfy cluster property. The theta-dependence exhibited by the Green functions corresponds to and may be removed by performing certain chiral gauge transformation.Comment: 16 pages, in REVTE

    Evidence for interhemispheric imbalance in stroke patients as revealed by combining transcranial magnetic stimulation and electroencephalography

    Get PDF
    Interhemispheric interactions in stroke patients are frequently characterized by abnormalities, in terms of balance and inhibition. Previous results showed an impressive variability, mostly given to the instability of motor-evoked potentials when evoked from the affected hemisphere. We aim to find reliable interhemispheric measures in stroke patients with a not-evocable motor-evoked potential from the affected hemisphere, by combining transcranial magnetic stimulation (TMS) and electroencephalography. Ninteen stroke patients (seven females; 61.26 ± 9.8 years) were studied for 6 months after a first-ever stroke in the middle cerebral artery territory. Patients underwent four evaluations: clinical, cortical, corticospinal, and structural. To test the reliability of our measures, the evaluations were repeated after 3 weeks. To test the sensitivity, 14 age-matched healthy controls were compared to stroke patients. In stroke patients, stimulation of the affected hemisphere did not result in any inhibition onto the unaffected. The stimulation of the unaffected hemisphere revealed a preservation of the inhibition mechanism onto the affected. This resulted in a remarkable interhemispheric imbalance, whereas this mechanism was steadily symmetric in healthy controls. This result was stable when cortical evaluation was repeated after 3 weeks. Importantly, patients with a better recovery of the affected hand strength were the ones with a more stable interhemispheric balance. Finally, we found an association between microstructural integrity of callosal fibers, suppression of interhemispheric TMS-evoked activity and interhemispheric connectivity. We provide direct and sensitive cortical measures of interhemispheric imbalance in stroke patients. These measures offer a reliable means of distinguishing healthy and pathological interhemispheric dynamics

    Evidence for interhemispheric imbalance in stroke patients as revealed by combining transcranial magnetic stimulation and electroencephalography

    Get PDF
    Interhemispheric interactions in stroke patients are frequently characterized by abnormalities, in terms of balance and inhibition. Previous results showed an impressive variability, mostly given to the instability of motor-evoked potentials when evoked from the affected hemisphere. We aim to find reliable interhemispheric measures in stroke patients with a not-evocable motor-evoked potential from the affected hemisphere, by combining transcranial magnetic stimulation (TMS) and electroencephalography. Ninteen stroke patients (seven females; 61.26 ± 9.8 years) were studied for 6 months after a first-ever stroke in the middle cerebral artery territory. Patients underwent four evaluations: clinical, cortical, corticospinal, and structural. To test the reliability of our measures, the evaluations were repeated after 3 weeks. To test the sensitivity, 14 age-matched healthy controls were compared to stroke patients. In stroke patients, stimulation of the affected hemisphere did not result in any inhibition onto the unaffected. The stimulation of the unaffected hemisphere revealed a preservation of the inhibition mechanism onto the affected. This resulted in a remarkable interhemispheric imbalance, whereas this mechanism was steadily symmetric in healthy controls. This result was stable when cortical evaluation was repeated after 3 weeks. Importantly, patients with a better recovery of the affected hand strength were the ones with a more stable interhemispheric balance. Finally, we found an association between microstructural integrity of callosal fibers, suppression of interhemispheric TMS-evoked activity and interhemispheric connectivity. We provide direct and sensitive cortical measures of interhemispheric imbalance in stroke patients. These measures offer a reliable means of distinguishing healthy and pathological interhemispheric dynamics

    Instantons and the infrared behavior of the fermion propagator in the Schwinger Model

    Full text link
    Fermion propagator of the Schwinger Model is revisited from the point of view of its infrared behavior. The values of anomalous dimensions are found in arbitrary covariant gauge and in all contributing instanton sectors. In the case of a gauge invariant, but path dependent propagator, the exponential dependence, instead of power law one, is established for the special case when the path is a straight line. The leading behavior is almost identical in any sector, differing only by the slowly varying, algebraic prefactors. The other kind of the gauge invariant function, which is the amplitude of the dressed Dirac fermions, may be reduced, by the appropriate choice of the dressing, to the gauge variant one, if Landau gauge is imposed.Comment: 9 pages, in REVTE

    Natural Variation of Model Mutant Phenotypes in Ciona intestinalis

    Get PDF
    BACKGROUND: The study of ascidians (Chordata, Tunicata) has made a considerable contribution to our understanding of the origin and evolution of basal chordates. To provide further information to support forward genetics in Ciona intestinalis, we used a combination of natural variation and neutral population genetics as an approach for the systematic identification of new mutations. In addition to the significance of developmental variation for phenotype-driven studies, this approach can encompass important implications in evolutionary and population biology. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report a preliminary survey for naturally occurring mutations in three geographically interconnected populations of C. intestinalis. The influence of historical, geographical and environmental factors on the distribution of abnormal phenotypes was assessed by means of 12 microsatellites. We identified 37 possible mutant loci with stereotyped defects in embryonic development that segregate in a way typical of recessive alleles. Local populations were found to differ in genetic organization and frequency distribution of phenotypic classes. CONCLUSIONS/SIGNIFICANCE: Natural genetic polymorphism of C. intestinalis constitutes a valuable source of phenotypes for studying embryonic development in ascidians. Correlating genetic structure and the occurrence of abnormal phenotypes is a crucial focus for understanding the selective forces that shape natural finite populations, and may provide insights of great importance into the evolutionary mechanisms that generate animal diversity
    corecore