38 research outputs found

    Early diagenesis of plant-derived dissolved organic matter along a wetland, mangrove, estuary ecotone

    Get PDF
    We studied the role of photochemical and microbial processes in contributing to the transformation of dissolved organic matter (DOM) derived from various plants that dominate the Florida Everglades. Plant-derived DOM leachate samples were exposed to photochemical and microbial degradation and the optical, chemical, and molecular weight characteristics measured over time. Optical parameters such as the synchronous fluorescence intensity between 270 and 290 nm (Fnpeak I), a strong indicator of protein and/or polyphenol content, decreased exponentially in all plant leachate samples, with microbial decay constants ranging from 21.0 d21 for seagrass to 20.11 d21 for mangrove (half-life [t1/2] 5 0.7–6.3 d). Similar decreases in polyphenol content and dissolved organic carbon (DOC) concentration also occurred but were generally an order of magnitude lower or did not change significantly over time. The initial molecular weight composition was reflected in the rate of Fnpeak I decay and suggests that plantderived DOM with a large proportion of high molecular weight structures, such as seagrass derived DOM, contain high concentrations of easily microbially degradable proteinaceous components. For samples exposed to extended simulated solar radiation, polyphenol and Fnpeak I photochemical decay constants were on average 20.7 d21 (t1/2 1.0 d). Our data suggest that polyphenol structures of plant-derived DOM are particularly sensitive to photolysis, whereas high molecular weight protein-like structures are degraded primarily through physical–chemical and microbial processes. Furthermore, microbial and physical processes initiated the formation of recalcitrant, highly colored high molecular weight polymeric structures in mangrove-derived DOM. Thus, partial, biogeochemical transformation of plant-derived DOM from coastal areas is rapid and is likely to influence carbon and nutrient cycling, especially in areas dominated by seagrass and mangrove forests

    Dissolved Organic Matter Dynamics in the Oligo/Meso-Haline Zone of Wetland-Influenced Coastal Rivers

    Get PDF
    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity \u3c 10) tidal zone of upper estuaries has been suggested to be more complex and locally influenced by geomorphological and hydrological features, the environmental dynamics of dissolved organic matter (DOM) and the environmental drivers controlling its source, transport, and fate have scarcely been evaluated. Here, we investigated the distribution patterns of DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation–emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity \u3c 10) of the oligo/meso-haline zone for three distinct wetland-influenced rivers; namely the Bekanbeushi River, a cool-temperate river with estuarine lake in Hokkaido, Japan, the Harney River, a subtropical river with tidally-submerged mangrove fringe in Florida, USA, and the Judan River, a small, acidic, tropical rainforest river in Borneo, Malaysia. For the first two rivers, a clear decoupling between DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here indicate that upper estuarine oligo/meso-haline regions of coastal wetland rivers are highly dynamic with regard to the biogeochemical behavior of DOM

    Characteristics and behavior of dissolved organic matter in the Kumaki River, Noto Peninsula, Japan

    Get PDF
    Dissolved organic matter (DOM) in river water was studied to understand the transport behavior of DOM in a small watershed with forest and paddy fields. Field experiments were conducted under normal flow conditions in the Kumaki River, which is located in the central part of the Noto Peninsula in Japan, during the period 2009-2010. The concentrations and structural properties of fulvic acid-like components, which are the major components of DOM, were determined using three-dimensional excitation-emission matrix spectroscopy and high-performance size-exclusion chromatography. The relative fluorescence intensity for fulvic acid-like components at an excitation wavelength of 305-335 nm and an emission wavelength of 425-440 nm increased from the upper forest area to the lower paddy field area and increased seasonally in this river system in the following order: winter, autumn, spring, summer. Fulvic acid-like components with a higher molecular weight were observed in the summer samples. These results suggest that higher precipitation and agricultural activity in the summer season increase the amount of fulvic acid-like components with higher molecular weight that are transported from the watershed into the river. © 2014 The Japanese Society of Limnology

    Effect of compaction on soil CO2 and CH4 fluxes from tropical peatland in Sarawak, Malaysia

    Get PDF
    Tropical peatland stores a large amount of carbon (C) and is an important C sink. In Malaysia, about 25% of the peatland area has been converted to oil palm plantation where drainage, compaction and groundwater table control are prerequisite. To date, relationship between land compaction and C emission from tropical peatland is scarcely studied. To understand the effect of compaction on soil carbon dioxide (CO2) and methane (CH4) flux from tropical peatland, a laboratory soil column incubation was conducted. Peat soil collected from a Mixed Peat Swamp forest were packed in polyvinyl chloride pipes to three different soil bulk densities (BD); 0.14 g cm–3, 0.18 g cm–3 and 0.22 g cm–3. Soil CO2 and CH4 flux from the soil columns were measured on weekly basis for twelve weeks. Total soil porosity and moisture retention of each soil BD were also determined using another set of peat sample packed into 100 cm3 soil core ring. Soil porosity decreased while soil moisture retention increased proportionally with increasing soil BD. Soil CH4 flux were reduced approximately by 22% with compaction. On contrary, soil CO2 fluxes were greater (P ≤ 0.05) at compacted soil when infiltration and percolation of rainwater become slower with time, until soil moisture becomes limiting factor. This study suggested that compaction affects water movement and gaseous transport in the peat profile, thus influences C emission from peat soil

    Mangrove tannins in aquatic ecosystems: Their fate and possible influence on dissolved organic carbon and nitrogen cycling

    No full text
    We describe the fate of mangrove leaf tannins in aquatic ecosystems and their possible influence on dissolved organic nitrogen (DON) cycling. Tannins were extracted and purified from senescent yellow leaves of the red mangrove (Rhizophora mangle) and used for a series of model experiments to investigate their physical and chemical reactivity in natural environments. Physical processes investigated included aggregation, adsorption to organic matter-rich sediments, and co-aggregation with DON in natural waters. Chemical reactions included structural change, which was determined by excitation–emission matrix fluorescence spectra, and the release of proteins from tannin–protein complexes under solar-simulated light exposure. A large portion of tannins can be physically eliminated from aquatic environments by precipitation in saline water and also by binding to sediments. A portion of DON in natural water can coprecipitate with tannins, indicating that mangrove swamps can influence DON cycling in estuarine environments. The chemical reactivity of tannins in natural waters was also very high, with a half-life of less than 1 d. Proteins were released gradually from tannin–protein complexes incubated under light conditions but not under dark conditions, indicating a potentially buffering role of tannin– protein complexes on DON recycling in mangrove estuaries. Although tannins are not detected at a significant level in natural waters, they play an important ecological role by preserving nitrogen and buffering its cycling in estuarine ecosystems through the prevention of rapid DON export/loss from mangrove fringe areas and/or from rapid microbial mineralization

    Quantitative and Qualitative Aspects of Dissolved Organic Carbon Leached from Senescent Plants in an Oligotrophic Wetland

    No full text
    We conducted a series of experiments whereby dissolved organic matter (DOM) was leached from various wetland and estuarine plants, namely sawgrass (Cladium jamaicense), spikerush (Eleocharis cellulosa), red mangrove (Rhizophora mangle), cattail (Typha domingensis), periphyton (dry and wet mat), and a seagrass (turtle grass; Thalassia testudinum). All are abundant in the Florida Coastal Everglades (FCE) except for cattail, but this species has a potential to proliferate in this environment. Senescent plant samples were immersed into ultrapure water with and without addition of 0.1% NaN3 (w/ and w/o NaN3, respectively) for 36 days. We replaced the water every 3 days. The amount of dissolved organic carbon (DOC), sugars, and phenols in the leachates were analyzed. The contribution of plant leachates to the ultrafiltered high molecular weight fraction of DOM (\u3e1 kDa; UDOM) in natural waters in the FCE was also investigated. UDOM in plant leachates was obtained by tangential flow ultrafiltration and its carbon and phenolic compound compositions were analyzed using solid state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy and thermochemolysis in the presence of tetramethylammonium hydroxide (TMAH thermochemolysis), respectively. The maximum yield of DOC leached from plants over the 36-day incubations ranged from 13.0 to 55.2 g C kg−1 dry weight. This amount was lower in w/o NaN3 treatments (more DOC was consumed by microbes than produced) except for periphyton. During the first 2 weeks of the 5 week incubation period, 60–85% of the total amount of DOC was leached, and exponential decay models fit the leaching rates except for periphyton w/o NaN3. Leached DOC (w/ NaN3) contained different concentrations of sugars and phenols depending on the plant types (1.09–7.22 and 0.38–12.4 g C kg−1 dry weight, respectively), and those biomolecules comprised 8–34% and 4–28% of the total DOC, respectively. This result shows that polyphenols that readily leach from senescent plants can be an important source of chromophoric DOM (CDOM) in wetland environments. The O-alkyl C was found to be the major C form (55±9%) of UDOM in plant leachates as determined by 13C CPMAS NMR. The relative abundance of alkyl C and carbonyl C was consistently lower in plant-leached UDOM than that in natural water UDOM in the FCE, which suggests that these constituents increase in relative abundance during diagenetic processing. TMAH thermochemolysis analysis revealed that the phenolic composition was different among the UDOM leached from different plants, and was expected to serve as a source indicator of UDOM in natural water. Polyphenols are, however, very reactive and photosensitive in aquatic environments, and thus may loose their plant-specific molecular characteristics shortly. Our study suggests that variations in vegetative cover across a wetland landscape will affect the quantity and quality of DOM leached into the water, and such differences in DOM characteristics may affect other biogeochemical processes

    Spatial and Temporal Variability of Dissolved Organic Matter Quantity and Composition in an Oilgotrophic Subtropical Coastal Wetland

    No full text
    Dissolved organic matter (DOM) is an essential component of the carbon cycle and a critical driver in controlling variety of biogeochemical and ecological processes in wetlands. The quality of this DOM as it relates to composition and reactivity is directly related to its sources and may vary on temporal and spatial scales. However, large scale, long-term studies of DOM dynamics in wetlands are still scarce in the literature. Here we present a multi-year DOM characterization study for monthly surface water samples collected at 14 sampling stations along two transects within the greater Everglades, a subtropical, oligotrophic, coastal freshwater wetland-mangrove-estuarine ecosystem. In an attempt to assess quantitative and qualitative variations of DOM on both spatial and temporal scales, we determined dissolved organic carbon (DOC) values and DOM optical properties, respectively. DOM quality was assessed using, excitation emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC). Variations of the PARAFAC components abundance and composition were clearly observed on spatial and seasonal scales. Dry versus wet season DOC concentrations were affected by dry-down and re-wetting processes in the freshwater marshes, while DOM compositional features were controlled by soil and higher plant versus periphyton sources respectively. Peat-soil based freshwater marsh sites could be clearly differentiated from marl-soil based sites based on EEM–PARAFAC data. Freshwater marsh DOM was enriched in higher plant and soil-derived humic-like compounds, compared to estuarine sites which were more controlled by algae- and microbial-derived inputs. DOM from fringe mangrove sites could be differentiated between tidally influenced sites and sites exposed to long inundation periods. As such coastal estuarine sites were significantly controlled by hydrology, while DOM dynamics in Florida Bay were seasonally driven by both primary productivity and hydrology. This study exemplifies the application of long term optical properties monitoring as an effective technique to investigate DOM dynamics in aquatic ecosystems. The work presented here also serves as a pre-restoration condition dataset for DOM in the context of the Comprehensive Everglades Restoration Plan (CERP)

    Heterocyclic N in the highly humified humic acids extracted from the subsoil of paddy fields and surface ando soils

    No full text
    8 pages, 4 figures, 2 tables, 42 references.Nitrogen composition of highly humified humic acids (HAs) yielded from the subsoil of paddy fields (paddy soil-Type A HAs) was compared with that of surface ando soils (ando soil-Type A HAs) using 15N CPMAS NMR spectroscopy. A significant amount of heterocyclic nitrogen was detected in the Type A HAs extracted from both environments, consisting up to 37% of total nitrogen. The relative abundance of heterocyclic N increased concomitantly with the increase of the specific visible absorbance at 600 nm of HAs in alkaline solution. Most paddy fields are reclaimed on alluvial soils in Japan, therefore ando soil-Type A HAs might have been incorporated into the parent materials of the subsoil of paddy fields during the alluviation processes. Since a major vegetation of ando soils is composed of C4 plants, Japanese pampas grasses (Miscanthus sinensis A.), the δ13C value of Type A HAs originating from ando soils was expected to differ from that of HAs formed under continuous cultivation of rice plants (Oryza sativa L., C3 plant). Thus, we investigated the origin of highly humified HAs in the subsoil of paddy fields by comparing the δ13C values of paddy soil-Type A HAs with those of ando soil-Type A HAs. The δ13C values of ando- and paddy soil-Type A HAs were −21.9 ± 0.6 and −23.4 ± 2.1‰, respectively, which suggests that the paddy soil-Type A HAs consist of a mixture of autochthonous (rice plant origin) and allochthonous (C4 plant) sources. The autochthonous source of paddy soil-Type A HAs in the subsoil will include fulvic acids (FAs) leached from the plow layer, which was also shown to contain a high concentration of heterocyclic nitrogen.Peer reviewe
    corecore