54 research outputs found

    Impact of chromophores on colour appearance in a computational skin model

    Get PDF
    Early diagnosis of skin cancer offers the patient more favorable treatment options. Color fidelity of skin images is a major concern for dermatologists as adoption of digital dermatoscopes is increasing rapidly. Accurate color depiction of the lesion and surrounding skin are vital in diagnostic evaluation of a lesion. We previously introduced VCT-Derma, a pipeline for dermatological Virtual Clinical Trials (VCTs) including detailed and flexible models of human skin and lesions, which represent the patient in the entire dermatoscopy-based diagnostic process. However, those initial models of skin and lesions did not properly account for tissue colors. Our new skin model accounts for tissue color appearance by incorporating chromophores (e.g., melanin, blood) into the tissue model, and simulating the optical properties of the various skin layers. The physical properties of the skin and lesion were selected from clinically plausible values. The model and simulated dermatoscope images were created in open modelling software, assuming a linear camera model. We have assumed ambient white lighting, with a 6mm distance to the camera. Our model of color appearance was characterised by comparing the brightness of the lesion to its depth. The brightness of the lesion is compared through the variability of the mean gray values of a cropped region around the lesion. We compare two skin models, one without extensive chromophore content and one with. Our preliminary evaluation of increasing chromophore content shows promise based on the results presented here. Further refinement and validation of the model is ongoing

    Image Processing Algorithms for Digital Mammography: A Pictorial Essay

    Get PDF
    Digital mammography systems allow manipulation of fine differences in image contrast by means of image processing algorithms. Different display algorithms have advantages and disadvantages for the specific tasks required in breast imaging—diagnosis and screening. Manual intensity windowing can produce digital mammograms very similar to standard screen-film mammograms but is limited by its operator dependence. Histogram-based intensity windowing improves the conspicuity of the lesion edge, but there is loss of detail outside the dense parts of the image. Mixture-model intensity windowing enhances the visibility of lesion borders against the fatty background, but the mixed parenchymal densities abutting the lesion may be lost. Contrast-limited adaptive histogram equalization can also provide subtle edge information but might degrade performance in the screening setting by enhancing the visibility of nuisance information. Unsharp masking enhances the sharpness of the borders of mass lesions, but this algorithm may make even an indistinct mass appear more circumscribed. Peripheral equalization displays lesion details well and preserves the peripheral information in the surrounding breast, but there may be flattening of image contrast in the nonperipheral portions of the image. Trex processing allows visualization of both lesion detail and breast edge information but reduces image contrast

    A conceptual framework for implementation fidelity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Implementation fidelity refers to the degree to which an intervention or programme is delivered as intended. Only by understanding and measuring whether an intervention has been implemented with fidelity can researchers and practitioners gain a better understanding of how and why an intervention works, and the extent to which outcomes can be improved.</p> <p>Discussion</p> <p>The authors undertook a critical review of existing conceptualisations of implementation fidelity and developed a new conceptual framework for understanding and measuring the process. The resulting theoretical framework requires testing by empirical research.</p> <p>Summary</p> <p>Implementation fidelity is an important source of variation affecting the credibility and utility of research. The conceptual framework presented here offers a means for measuring this variable and understanding its place in the process of intervention implementation.</p

    Classification of galactograms using fractal properties of the breast ductal network

    No full text
    Several types of breast carcinomas tend to spread along the surface of the ductal lumen. Spontaneous nipple discharge can be an early symptom of such cancer development that does not otherwise result in visible mammographic changes. An imaging procedure that can visualize such symptoms is galactography. We focus on characterizing the topology of the ductal network in galactograms based on fractal properties. Statistically significant differences of fractal properties were detected among healthy subjects and patients with reported galactographic findings. We performed receiver operating characteristic (ROC) curve analysis in order to assess the accuracy of using the regularization dimension values for separating among ductal trees. The area under the ROC curve observed was 0.86. 1
    corecore