5,901 research outputs found

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    Dynamical Casimir effect with cylindrical waveguides

    Full text link
    I consider the quantum electromagnetic field in a coaxial cylindrical waveguide, such that the outer cylindrical surface has a time-dependent radius. The field propagates parallel to the axis, inside the annular region between the two cylindrical surfaces. When the mechanical frequency and the thickness of the annular region are small enough, only Transverse Electromagnetic (TEM) photons may be generated by the dynamical Casimir effect. The photon emission rate is calculated in this regime, and compared with the case of parallel plates in the limit of very short distances between the two cylindrical surfaces. The proximity force approximation holds for the transition matrix elements in this limit, but the emission rate scales quadratically with the mechanical frequency, as opposed to the cubic dependence for parallel plates.Comment: 6 page

    Topological Properties from Einstein's Equations?

    Full text link
    In this work we propose a new procedure for to extract global information of a space-time. We considered a space-time immersed in a higher dimensional space and we formulate the equations of Einstein through of the Frobenius conditions to immersion. Through of an algorithm and the implementation into algebraic computing system we calculate normal vectors from the immersion to find out the second fundamental form. We make a application for space-time with spherical symmetry and static. We solve the equations of Einstein to the vacuum and we obtain space-times with different topologies.Comment: 7 pages, accepted for publication in Int. J. Mod. Phys.

    Inertial forces in the Casimir effect with two moving plates

    Full text link
    We combine linear response theory and dimensional regularization in order to derive the dynamical Casimir force in the low frequency regime. We consider two parallel plates moving along the normal direction in DD-dimensional space. We assume the free-space values for the mass of each plate to be known, and obtain finite, separation-dependent mass corrections resulting from the combined effect of the two plates. The global mass correction is proportional to the static Casimir energy, in agreement with Einstein's law of equivalence between mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical Review

    Embedding Versus Immersion in General Relativity

    Full text link
    We briefly discuss the concepts of immersion and embedding of space-times in higher-dimensional spaces. We revisit the classical work by Kasner in which he constructs a model of immersion of the Schwarzschild exterior solution into a six-dimensional pseudo-Euclidean manifold. We show that, from a physical point of view, this model is not entirely satisfactory since the causal structure of the immersed space-time is not preserved by the immersion.Comment: 5 page

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Access to information, concerns, myths and truths on food safety during COVID-19: an overview of Portuguese population

    Get PDF
    Purpose: The COVID-19 pandemic raised questions and concerns about the possibility of transmission of SARS-CoV-2 via foods. While cases of COVID were rapidly rising, information related to the virus and ways of prevention was also increasing, with much of this information being provided by the media and the general population. In this context, this study had two main objectives: 1) To understand the doubts and concerns of the Portuguese population related to food safety during the first wave of COVID-19 and how they clarified these issues and 2) to analyze the population's opinion on myths and truths related to the transmission of the infection. Methods & Materials: A survey including questions about a) concerns and information on food safety during the first wave of COVID-19 pandemic; b) myths and truths about COVID-1 and c) respondents’ profile. The survey was released online between June and October of 2020.Results: The main doubt of the respondents was related to the manipulation of food (40,7%) followed by the possibility of transmission of COVID-19 through food (12,6%) and which foods should be avoided due to the pandemic (12,6%). 33,3% of the participants stated that television was the main mean of information accessed to clarify these doubts, followed by a Guideline launched by the Directorate-General of Health (31,8%). However, 50,3% said that they had only found answers to some of their questions. 50% of the respondents with higher level of education and 30% of the respondents with lower level of education had doubts about the possibility of the transmission of COVID-19 through food. Also, most of the survey participants disagreed with the affirmations regarding popular ways of disinfecting food to prevent infection. Conclusion: COVID-19 pandemic raised several doubts, however when related to food safety, the main doubt was about the manipulation of food due to the concern of SARS-CoV-2 transmission. Most respondents do not believe myths about COVID-19 and food safety, but this was dependent on the level of education.info:eu-repo/semantics/publishedVersio

    Towards absolute calibration of optical tweezers

    Get PDF
    Aiming at absolute force calibration of optical tweezers, following a critical review of proposed theoretical models, we present and test the results of MDSA (Mie-Debye-Spherical Aberration) theory, an extension of a previous (MD) model, taking account of spherical aberration at the glass/water interface. This first-principles theory is formulated entirely in terms of experimentally accessible parameters (none adjustable). Careful experimental tests of the MDSA theory, undertaken at two laboratories, with very different setups, are described. A detailed description is given of the procedures employed to measure laser beam waist, local beam power at the transparent microspheres trapped by the tweezers, microsphere radius and the trap transverse stiffness, as a function of radius and height in the (inverted microscope) sample chamber. We find generally very good agreement with MDSA theory predictions, for a wide size range, from the Rayleigh domain to large radii, including the values most often employed in practice, and at different chamber heights, both with objective overfilling and underfilling. The results asymptotically approach geometrical optics in the mean over size intervals, as they should, and this already happens for size parameters not much larger than unity. MDSA predictions for the trapping threshold, position of stiffness peak, stiffness variation with height, multiple equilibrium points and `hopping' effects among them are verified. Remaining discrepancies are ascribed to focus degradation, possibly arising from objective aberrations in the infrared, not yet included in MDSA theory.Comment: 15 pages, 20 figure
    corecore