4,917 research outputs found

    Internet gaming disorder, aggression and psychological distress in young adults

    Get PDF
    Introduction: Internet gaming has become a topic of interest since it has positive but also negative effects. Objectives: To explore the relationship between internet gaming, aggression and psychological distress in young adults. Methods: 229 Portuguese subjects (55.5% females), with a mean age of 21.13 years old (SD = 2.075, range: 18-29) filled in the Internet Gaming Disorder Scale-Short Form, the Buss-Perry Aggression Questionnaire, and the Depression, Anxiety and Stress Scales-21. Results: The total score of internet gaming was of 15.90 (SD=6.32), 79.9% (n=183) of the sample used to play videogames and 24.5% (n=56) spent more than ten hours playing a week. Internet gaming was correlated with physical aggression (r=.23**), anger (r=.31**) and hostility (r=.35**); and with depression (r=.36**), anxiety (r=.28**), and stress (r=.31**). A Mann Whitney U test revealed significant differences in internet gaming disorder levels of males (Md=130.75, n=102) and females (Md=102.35, n=127), U=4871.000 z=-3.232, p=.001, r=4.49. Conclusions: Internet gaming disorder is associated with aggression and psychological distress, and males presented higher internet gaming disorder levels. Future studies are needed to explore the bidirectional relationships between gaming disorder, aggression and psychological distress.info:eu-repo/semantics/publishedVersio

    Quantum radiation pressure on a moving mirror at finite temperature

    Get PDF
    We compute the radiation pressure force on a moving mirror, in the nonrelativistic approximation, assuming the field to be at temperature T.T. At high temperature, the force has a dissipative component proportional to the mirror velocity, which results from Doppler shift of the reflected thermal photons. In the case of a scalar field, the force has also a dispersive component associated to a mass correction. In the electromagnetic case, the separate contributions to the mass correction from the two polarizations cancel. We also derive explicit results in the low temperature regime, and present numerical results for the general case. As an application, we compute the dissipation and decoherence rates for a mirror in a harmonic potential well.Comment: Figure 3 replaced, changes mainly in Sections IV and V, new appendix introduced. To appear in Physical Review

    Diffusive epidemic process: theory and simulation

    Full text link
    We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B -> A and A + B -> 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly, or at the same rate as B particles.Comment: 19 pages, 5 figure

    Inertial forces in the Casimir effect with two moving plates

    Full text link
    We combine linear response theory and dimensional regularization in order to derive the dynamical Casimir force in the low frequency regime. We consider two parallel plates moving along the normal direction in DD-dimensional space. We assume the free-space values for the mass of each plate to be known, and obtain finite, separation-dependent mass corrections resulting from the combined effect of the two plates. The global mass correction is proportional to the static Casimir energy, in agreement with Einstein's law of equivalence between mass and energy for stressed rigid bodies.Comment: 9 pages, 1 figure; title and abstract changed; to appear in Physical Review

    Correlation Function of Galaxy Groups

    Full text link
    We use the Updated Zwicky Catalog of galaxies (Falco et al. 1999) to generate a catalog of groups, by means of a friend-of-friend algorithm. The correlation length of the total sample is well fitted with a power law ξ(r)=(r/r0)γ \xi(r)=(r/r_0)^\gamma with parameters r0=9.0±0.4h1Mpcr_0=9.0 \pm 0.4 h^{-1}Mpc and γ=1.67±0.09\gamma = -1.67 \pm 0.09 for values of r<70h1Mpcr<70 h^{-1} Mpc. Three subsamples defined by the range of group virial masses M{\cal M} were used to have their clustering properties examined throughout the autocorrelation function. We find an increase of the amplitude of the correlation function according to the group masses which extends the results of the r0dc r_0-d_c relation for galaxy systems at small dcd_c. For completeness we have also analyzed a sample of groups obtained from the Southern Sky Redshift Survey (da Costa et al.1998) in the range of virial masses 5×1012M<M<4×1014M5\times10^{12}M_{\odot}<{\cal M}<4\times10^{14}M_{\odot} to compare the results with those obtained from GUZC.Comment: 9 figures, accepted for publication in Ap

    Quantum radiation in a plane cavity with moving mirrors

    Full text link
    We consider the electromagnetic vacuum field inside a perfect plane cavity with moving mirrors, in the nonrelativistic approximation. We show that low frequency photons are generated in pairs that satisfy simple properties associated to the plane geometry. We calculate the photon generation rates for each polarization as functions of the mechanical frequency by two independent methods: on one hand from the analysis of the boundary conditions for moving mirrors and with the aid of Green functions; and on the other hand by an effective Hamiltonian approach. The angular and frequency spectra are discrete, and emission rates for each allowed angular direction are obtained. We discuss the dependence of the generation rates on the cavity length and show that the effect is enhanced for short cavity lengths. We also compute the dissipative force on the moving mirrors and show that it is related to the total radiated energy as predicted by energy conservation.Comment: 17 pages, 1 figure, published in Physical Review

    Particle Creation by a Moving Boundary with Robin Boundary Condition

    Full text link
    We consider a massless scalar field in 1+1 dimensions satisfying a Robin boundary condition (BC) at a non-relativistic moving boundary. We derive a Bogoliubov transformation between input and output bosonic field operators, which allows us to calculate the spectral distribution of created particles. The cases of Dirichlet and Neumann BC may be obtained from our result as limiting cases. These two limits yield the same spectrum, which turns out to be an upper bound for the spectra derived for Robin BC. We show that the particle emission effect can be considerably reduced (with respect to the Dirichlet/Neumann case) by selecting a particular value for the oscillation frequency of the boundary position

    The Seyfert Population in the Local Universe

    Full text link
    The magnitude-limited catalog of the Southern Sky Redshift Survey (SSRS2), is used to characterize the properties of galaxies hosting Active Galactic Nuclei. Using emission-line ratios, we identify a total of 162 (3%) Seyfert galaxies out of the parent sample with 5399 galaxies. The sample contains 121 Seyfert 2 galaxies and 41 Seyfert 1. The SSRS2 Seyfert galaxies are predominantly in spirals of types Sb and earlier, or in galaxies with perturbed appearance as the result of strong interactions or mergers. Seyfert galaxies in this sample are twice as common in barred hosts than the non-Seyferts. By assigning galaxies to groups using a percolation algorithm we find that the Seyfert galaxies in the SSRS2 are more likely to be found in binary systems, when compared to galaxies in the SSRS2 parent sample. However, there is no statistically significant difference between the Seyfert and SSRS2 parent sample when systems with more than 2 galaxies are considered. The analysis of the present sample suggests that there is a stronger correlation between the presence of the AGN phenomenon with internal properties of galaxies (morphology, presence of bar, luminosity) than with environmental effects (local galaxy density, group velocity dispersion, nearest neighbor distance).Comment: 35 pages, 13 figures, Accepted to be publised in Astronomical Journa

    Optical bistability in sideband output modes induced by squeezed vacuum

    Full text link
    We consider NN two-level atoms in a ring cavity interacting with a broadband squeezed vacuum centered at frequency ωs\omega_{s} and an input monochromatic driving field at frequency ω\omega . We show that, besides the central mode (at \o), many other {\em sideband modes} are produced at the output, with frequencies shifted from ω\omega by multiples of 2(ωωs) 2(\omega -\omega_{s}). Here we analyze the optical bistability of the two nearest sideband modes, one red-shifted and the other blue-shifted.Comment: Replaced with final published versio
    corecore