11 research outputs found

    Production and structural studies of lung surfactant protein B (SP-B) peptides

    Get PDF
    Lung surfactant is a mixture of lipids and proteins which is critical for normal breathing by lining the air-water interface to reduce the surface tension. Lung surfactant protein B (SP-B) is the only essential protein component of lung surfactant complex due to the lethality of any SP-B deficiency. It is thought that SP-B functions by enhancing lipid rearrangements at various phases of the breathing cycle. However, the high-resolution structure and mechanism of SP-B are not yet understood. In the first part of this research, SP-B and a 7-residue deletion mutant of SP-B were produced recombinantly and partially characterized. In the second part of this research, circular dichroism, solution and solid-state nuclear magnetic resonance (NMR) methods were used to assess the structure of two SP-B-based peptides, Super-Mini-B and N-terminal insertion sequence (SP-B₁₋₇). Super-Mini-B is composed of the N-terminal 7-residue insertion sequence and the N-and C-terminal helices of SP-B. Interestingly, it was observed that Super-Mini-B produces greater lipid membrane perturbation than the peptide which lacks the N-terminal insertion sequence (i.e. Mini-B). Comparing the results of structural studies on Mini-B, SP-B₁₋₇ and Super-Mini-B helps unveil the contribution of the 7-residue insertion sequence to the function of SP-B

    Structural and Biochemical Characterization of VirB8 Protein in Type IV Secretion Systems

    Full text link
    Secretion is the passage of macromolecules across cellular membranes. In bacteria, secretion is essential for virulence and survival. Gram-negative bacteria use specialized envelope-spanning multiprotein complexes to secrete macromolecules called type IV secretion system (T4SS). T4SSs mediate the secretion of monomeric proteins, multisubunit protein toxins and nucleoprotein complexes. Also, they contribute to the horizontal spread of plasmid-encoded antibiotic resistance genes. Consequently, they are potential targets for antivirulence drugs. Gram- negative bacteria have two membranes that the secretion complex spans. As a result, the T4SS consists of proteins inserted in the membranes and of soluble proteins that face into or out of the bacterial cell. The details of channel assembly and structure are not known, although recent advances have revealed the structure of the core secretion channel. VirB8 is an inner membrane protein of the complex that interacts with many other T4SS subunits and works as nucleation factor for T4SS channel assembly. Biophysical studies and NMR experiments in particular were conducted to characterize the structural aspects of VirB8 interactions. Dynamic regions of VirB8 during monomer-to-dimer transition were identified by NMR spectroscopy. X-ray crystal and NMR analyses revealed structural differences at the helical regions (α-1 and α-4) of wild-type VirB8 and its monomeric variant VirB8M102R. Fragment screening identified small molecules binding to the wild-type and monomeric variant. In silico docking analyses suggested that the surface groove in the VirB8 structure is important for effective binding of the small molecules. NMR experiments and biochemical assays demonstrated that the ÎČ-sheet domain (ÎČ1 in particular) is the binding interface of VirB8 for the interaction with VirB10. The identified interface has functional importance for T4SS-mediated conjugation. In addition, I used NMR spectroscopy to identify changes in the structure of VirB8 upon interaction with VirB5. Altogether, structural and biochemical studies on periplasmic and full length VirB8 enabled us to characterize the sequence of interactions between VirB8 and other VirB proteins during T4SS complex assembly and function. The results of this research may lead to an innovative strategy for the development of novel antimicrobial drugs.La sĂ©crĂ©tion est le passage de macromolĂ©cules Ă  travers les membranes cellulaires. Chez les bactĂ©ries, la sĂ©crĂ©tion est essentielle pour la virulence et la survie. Les bactĂ©ries Ă  GramnĂ©gatif utilisent le systĂšme de sĂ©crĂ©tion de type IV (SST4) pour la sĂ©crĂ©tion de toxines et de nuclĂ©oprotĂ©ines. Les SST4 contribuent notamment Ă  la propagation des gĂšnes de rĂ©sistance aux antibiotiques. Pour cette raison, les composants du SST4 sont des cibles potentielles pour le dĂ©veloppement de mĂ©dicaments antivirulence. Le SST4 est un complexe protĂ©ique qui s’étend entre la double membrane de la bactĂ©rie Ă  Gram-nĂ©gatif. Les protĂ©ines qui le composent sont insĂ©rĂ©es dans les membranes cellulaires ou solubles. Bien que la structure du pore central du SST4 ait Ă©tĂ© rĂ©solue rĂ©cemment, les dĂ©tails de l'assemblage et la structure de ce complexe ne sont pas connus. VirB8 est une protĂ©ine de la membrane interne qui interagit avec de nombreuses autres sous-unitĂ©s du SST4. Il s’agit d’un acteur central de l'assemblage du SST4. Des Ă©tudes biophysiques, et notamment des expĂ©riences de RMN ont ainsi Ă©tĂ© rĂ©alisĂ©es pour caractĂ©riser les aspects structuraux des interactions avec VirB8. Des regions dynamiques dans la structure de VirB8 ont Ă©tĂ© identifiĂ©es par spectroscopie RMN lors de la transition entre la forme monomĂ©rique et dimĂ©rique. Les analyses de cristallographie et de RMN ont rĂ©vĂ©lĂ© des diffĂ©rences structurales dans les rĂ©gions hĂ©licoĂŻdales (α1 et α4) de VirB8 wild-type et du variant monomĂ©rique VirB8M102R. Le criblage de fragments a permis d’identifier de petites molĂ©cules capables de se lier Ă  VirB8 ainsi qu’au variant monomĂ©rique. Les analyses d’arrimage molĂ©culaire in silico suggĂšrent que la rainure de surface dans la structure VirB8 est importante pour laliaison de ces petites molĂ©cules. Les expĂ©riences de RMN et les essais biochimiques rĂ©vĂšlent que le feuillet ÎČ (ÎČ1 en particulier) constitue l'interface d’interaction entre VirB8 et VirB10. Cette interface d’interaction est d’ailleurs importante pour la conjugaison du SST4. De plus, j'ai identifiĂ© des changements dans la structure de VirB8 lors de l'interaction avec VirB5. Les Ă©tudes sur la protĂ©ine VirB8 nous ont permis de caractĂ©riser la sĂ©quence d'Ă©vĂ©nements entre VirB8 et d'autres protĂ©ines VirB, rĂ©gulant l'assemblage et la fonction du SST4

    <sup>2</sup>H spectra of mechanically oriented 7∶3 POPC-<i>d</i><sub>31</sub>:POPG bilayers in the presence (upper panel) and absence (lower panel) of 1 mol% SP-B (1–25,63–78).

    No full text
    <p>The spectra were acquired with 60000 transients at 23°C. Dashed vertical lines indicate the quadrupole splitting of deuterons on the C15 acyl chain segment of POPC-<i>d</i><sub>31</sub> in the absence of SP-B (1–25,63–78).</p

    Selected regions of 2D NOESY NMR spectra of 1 mM SP-B (1–25,63–78) in 150 mM SDS solution at pH 5 and 45°C (red) and 1 mM SP-B (8–25,63–78) in 150 mM SDS at pH 5 and 37°C (blue).

    No full text
    <p>Selected regions of 2D NOESY NMR spectra of 1 mM SP-B (1–25,63–78) in 150 mM SDS solution at pH 5 and 45°C (red) and 1 mM SP-B (8–25,63–78) in 150 mM SDS at pH 5 and 37°C (blue).</p

    A) Far-UV CD spectra of SP-B (8–25,63–78) (triangles), SP-B (1–25,63–78) (circles) and SP-B (1–7) (squares) dissolved in SDS micelles.

    No full text
    <p>Spectra were taken using a 1 mm path-length quartz cuvette from 200 nm to 260 nm at 25°C. Shown are single scans. Three additional spectra of each sample were acquired and the 4 scans averaged together before % secondary structure was extracted (<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0072821#pone-0072821-t002" target="_blank"><b>Table 2</b></a>).</p
    corecore