7 research outputs found

    Newsletter Barkcure No. 2

    Get PDF
    The second Newsletter for the research project called “Condensed tannins from Norwegian pine and spruce bark - antiparasitic effects and potential commercial exploitation

    Potential of X-ray computed tomography for 3D anatomical analysis and microdensitometrical assessment in wood research with focus on wood modification

    Get PDF
    Studying structure and chemistry of wood and wood-based materials is the backbone of all wood research and many techniques are at hand to do so. A very valuable modality is X-ray computed tomography (CT), able to non-destructively probe the three-dimensional (3D) structure and composition. In this paper, we elaborate on the use of Nanowood, a flexible multi-resolution X-ray CT set-up developed at UGCT, the Ghent University Centre for X-ray Tomography. The technique has been used successfully in many different fields of wood science. It is illustrated how 3D structural and microdensitometrical data can be obtained using different scan set-ups and protocols. Its potential for the analysis of modified wood is exemplified, e.g. for the assessment of wood treated with hydrophobing agents, localisation of modification agents, pathway analysis related to functional tissues, dimensional changes due to thermal treatment, etc. Furthermore, monitoring of transient processes is a promising field of activity too

    Extracts of pine bark (Pinus sylvestris) inhibit Cryptosporidium parvum growth in cell culture

    Get PDF
    The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesized that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture. Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents, were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at 7 different concentrations. Parasite growth inhibition was quantified by qPCR. The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regards to the dry matter concentration of each extract and to CT concentrations. Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum

    Newsletter BarkCure No. 3

    No full text
    The third newsletter for the research project called “Condensed tannins from Norwegian pine and spruce bark - antiparasitic effects and potential commercial exploitation

    Extracts of pine bark (Pinus sylvestris) inhibit Cryptosporidium parvum growth in cell culture

    No full text
    The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesized that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture. Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents, were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at 7 different concentrations. Parasite growth inhibition was quantified by qPCR. The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regards to the dry matter concentration of each extract and to CT concentrations. Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum

    Condensed tannins, novel compounds and sources of variation determine the antiparasitic activity of Nordic conifer bark against gastrointestinal nematodes

    Get PDF
    Abstract The antiparasitic potential of plants could offer a vital solution to alleviating the costs of gastrointestinal nematode (GIN) infections in ruminant production globally. Leveraging known bioactive molecules, however, is complex, where plant species, extraction processes and seasonality impact bioavailability and efficacy. This study assessed the impact of a comprehensive set of factors on the antiparasitic activity of Norwegian conifers to identify bark compounds specific against GIN. Antiparasitic activity was determined using in vitro assays targeting morphologically distinct life stages of ovine GIN: the egg hatch assay and larval motility assay. In depth characterisation of the chemical composition of the bark extracts was carried out using chromatographic separation, UV-absorbance, and molecular mass profiles to identify compounds implicated in the activity. Three key findings emerged: (1) the activity of bark extracts varied markedly from 0 to 100% antiparasitic efficacy, owing to tree species, extraction solvent and seasonality; (2) the GIN exhibited species-and stage-specific susceptibility to the bark extracts; (3) the presence of condensed tannins, amongst other compounds, was associated with anthelmintic activity. These findings add new insights into urgently needed alternative parasite control strategies in livestock

    Extracts of pine bark (Pinus sylvestris) inhibit Cryptosporidium parvum growth in cell culture

    No full text
    The widespread apicomplexan parasite Cryptosporidium parvum is responsible for severe gastrointestinal disease in humans and animals. The treatment options are limited, and the efficacy of available drugs is low. Bark contains condensed tannins (CT), which are bioactive compounds previously shown to inhibit parasite development. Here, we examined the anti-cryptosporidial properties of bark extract of Scots pine (Pinus sylvestris) against C. parvum by means of an in vitro growth inhibition test. We hypothesized that bark extracts would have dose-dependent inhibitory effects on the development of C. parvum in cell culture. Bark extracts from Scots pine extracted with acetone, methanol, and water as solvents, were investigated using human colorectal adenocarcinoma cells infected with C. parvum. Oocysts were inoculated onto the cell monolayer and bark extract was added at 7 different concentrations. Parasite growth inhibition was quantified by qPCR. The acetone and methanol extracts demonstrated a sigmoid dose-dependent inhibition of C. parvum. The IC50 values were 244.6 and 279.1 µg dry matter extract/mL, and 25.4 and 24.1 µg CT/mL, for acetone and methanol extracts, respectively. The IC50 for both extracts were similar, both with regards to the dry matter concentration of each extract and to CT concentrations. Given the limited treatment options available for Cryptosporidium spp., the evidence generated in our study encourages further investigation into the in vitro and in vivo effects of pine bark extracts against C. parvum
    corecore