127 research outputs found

    Synergistic Cytotoxic Effect of Busulfan and the PARP Inhibitor Veliparib in Myeloproliferative Neoplasms

    Get PDF
    ABSTRACT Patients with high-risk myeloproliferative neoplasms (MPNs), and in particular myelofibrosis (MF), can be cured only with allogeneic hematopoietic stem cell transplantation (HSCT). Because MPNs and JAK2V617F-mutated cells show genomic instability, stalled replication forks, and baseline DNA double-strand breaks, DNA repair inhibition with poly(ADP-ribose) polymerase-1 (PARP-1) inhibitors represents a potential novel therapy. Because the alkylating agent busulfan is integral in conditioning regimens for HSCT and leads to stalled replication forks through DNA strand cross-linking, we hypothesized that PARP inhibition with veliparib in combination with busulfan may lead to synergistic cytotoxicity in MPN cells. We first treated 2 MPN cell lines harboring the JAK2V617F mutation (SET2 and HEL) with veliparib at increasing concentrations and measured cell proliferation. SET2 and HEL cells were relatively sensitive to veliparib (IC50 of 11.3 μM and 74.2 μM, respectively). We next treated cells with increasing doses of busulfan in combination with 4 μM veliparib and found that the busulfan IC50 decreased from 27 μM to 4 μM in SET2 cells and from 45.1 μM to 28.1 μM in HEL cells. The mean combination index was .55 for SET2 cells and .40 for HEL cells. Combination treatment of SET2 cells caused G2M arrest in 53% of cells, compared with 30% with veliparib alone and 35% with busulfan alone. G2M arrest was associated with activation of the ATR-Chk1 pathway, as shown by an immunofluorescence assay for phosphorylated Chk1 (p-Chk1). We then tested in vivo the effect of combined low doses of busulfan and veliparib in a JAK2V617F MPN-AML xenotransplant model. Vehicle- and veliparib-treated mice had similar median survival of 39 and 40 days, respectively. Combination treatment increased median survival from 47 days (busulfan alone) to 50 days (P = .02). Finally, we tested the combined effect of busulfan and veliparib on CD34+ cells obtained from the bone marrow or peripheral blood of 5 patients with JAK2V617F-mutated and 2 patients with CALR-mutated MF. MF cells treated with the combination of veliparib and busulfan showed reduced colony formation compared with busulfan alone (87% versus 68%; P = .001). In contrast, treatment of normal CD34+ cells with veliparib did not affect colony growth. Here we show that in vivo confirmation that treatment with the PARP-1 inhibitor veliparib and busulfan results in synergistic cytotoxicity in MPN cells. Our data provide the rationale for testing novel pretransplantation conditioning regimens with combinations of PARP-1 inhibition and reduced doses of alkylators, such as busulfan and melphalan, for high-risk MPNs or MPN-derived acute myelogenous leukemia

    Gaussian mixture models and machine learning predict megakaryocytic growth and differentiation potential ex vivo

    Get PDF
    The ability to analyze single cells via flow cytometry has resulted in a wide range of biological and medical applications. Currently, there is no established framework to compare and interpret time-series flow cytometry data for cell engineering applications. Manual analysis of temporal trends is time-consuming and subjective for large-scale datasets. We resolved this bottleneck by developing TEmporal Gaussian Mixture models (TEGM), an unbiased computational strategy to quantify and predict temporal trends of developing cell subpopulations indicative of cellular phenotype. TEGM applies Gaussian mixture models and gradient boosted trees for cell engineering applications. TEGM enables the extraction of subtle features, such as the dispersion and rate of change of surface marker expression for each subpopulation over time. These critical, yet hard-to-discern, features are fed into machine-learning algorithms that predict underlying cell classes. Our framework can be flexibly applied to conventional flow cytometry sampling schemes, and allows for faster and more consistent processing of time-series flow cytometry data. Please click Additional Files below to see the full abstract

    Using Gaussian mixture models and machine learning to predict donor- dependent megakaryocytic cell growth and differentiation potential ex vivo

    Get PDF
    The ability to analyze single cells via flow cytometry has resulted in a wide range of biological and medical applications. Currently, there is no established framework to compare and interpret time-series flow cytometry data for cell engineering applications. Manual analysis of temporal trends is time-consuming and subjective for large-scale datasets. We resolved this bottleneck by developing TEmporal Gaussian Mixture models (TEGM), an unbiased computational strategy to quantify and predict temporal trends of developing cell subpopulations indicative of cellular phenotype.. Please click Additional Files below to see the full abstract

    t cell mediated rejection of human cd34 cells is prevented by costimulatory blockade in a xenograft model

    Get PDF
    Abstract A xenograft model of stem cell rejection was developed by co-transplantating human CD34 + and allogeneic CD3 + T cells into NOD-scid ɣ-chain null mice. T cells caused graft failure when transplanted at any CD34/CD3 ratio between 1:50 and 1:.1. Kinetics experiments showed that 2 weeks after transplantation CD34 + cells engrafted the marrow and T cells expanded in the spleen. Then, at 4 weeks only memory T cells populated both sites and rejected CD34 + cells. Blockade of T cell costimulation was tested by injecting the mice with abatacept (CTLA4-IgG1) from day –1 to +27 (group A), from day –1 to +13 (group B), or from day +14 to +28 (group C). On day +56 groups B and C had rejected the graft, whereas in group A graft failure was completely prevented, although with lower stem cell engraftment than in controls ( P  = .03). Retransplantation of group A mice with same CD34 + cells obtained a complete reconstitution of human myeloid and B cell lineages and excluded latent alloreactivity. In this first xenograft model of stem cell rejection we showed that transplantation of HLA mismatched CD34 + cells may be facilitated by treatment with abatacept and late stem cell boost

    Activation of Rac1 and the p38 Mitogen-activated Protein Kinase Pathway in Response to All-trans-retinoic Acid

    Get PDF
    Several signaling pathways are activated by all-trans-retinoic acid (RA) to mediate induction of differentiation and apoptosis of malignant cells. In the present study we provide evidence that the p38 MAP kinase pathway is activated in a RA-dependent manner in the NB-4, acute pro-myelocytic leukemia, and the MCF-7, breast carcinoma, cell lines. RA treatment of cells induces a time- and dose-dependent phosphorylation of p38, and such phosphorylation results in activation of its catalytic domain. p38 activation is not inducible by RA in a variant NB-4 cell line, NB-4.007/6, which is resistant to the effects of RA, suggesting a role for this pathway in the induction of RA responses. Our data also demonstrate that the small G-protein Rac1 is activated by RA and functions as an upstream regulator of p38 activation, whereas the MAPKAPK-2 serine kinase is a downstream effector for the RA-activated p38. To obtain information on the functional role of the Rac1/p38/MAPKAPK-2 pathway in RA signaling, the effects of pharmacological inhibition of p38 on RA-induced gene transcription and cell differentiation were determined. Our results indicate that treatment of cells with the SB203580 inhibitor does not inhibit RA-dependent gene transcription via retinoic acid response elements or induction of Stat1 protein expression. However, treatment with SB203580 or SB202190 strongly enhances RA-dependent induction of cell differentiation and RA-regulated growth inhibitory responses. Altogether, our findings demonstrate that the Rac1/p38 MAP kinase pathway is activated in a RA-dependent manner and exhibits negative regulatory effects on the induction of differentiation

    Effect of AGM and Fetal Liver-Derived Stromal Cell Lines on Globin Expression in Adult Baboon (P. anubis) Bone Marrow-Derived Erythroid Progenitors

    Get PDF
    This study was performed to investigate the hypothesis that the erythroid micro-environment plays a role in regulation of globin gene expression during adult erythroid differentiation. Adult baboon bone marrow and human cord blood CD34+ progenitors were grown in methylcellulose, liquid media, and in co-culture with stromal cell lines derived from different developmental stages in identical media supporting erythroid differentiation to examine the effect of the micro-environment on globin gene expression. Adult progenitors express high levels of γ-globin in liquid and methylcellulose media but low, physiological levels in stromal cell co-cultures. In contrast, γ-globin expression remained high in cord blood progenitors in stromal cell line co-cultures. Differences in γ-globin gene expression between adult progenitors in stromal cell line co-cultures and liquid media required cell-cell contact and were associated with differences in rate of differentiation and γ-globin promoter DNA methylation. We conclude that γ-globin expression in adult-derived erythroid cells can be influenced by the micro-environment, suggesting new potential targets for HbF induction

    'Ilmu al Thibi al Bithari al Tathbiqi

    No full text
    544 hal.; 24 C
    • …
    corecore