17 research outputs found

    Biopolymeric Nanoparticles, Pickering Nanoemulsions and Nanophytosomes for Loading of Zataria multiflora Essential Oil as a Biopreservative

    Get PDF
    Background and Objective: Essential oils include low solubility, poor bioavailability and rapid release, which may limit their use as bioactive compounds in foods and medicine. Nanoencapsulation can preserve inherent qualities of essential oils and improve their physicochemical characteristics and health benefits. Focus of the present study was on the loading of essential oils from Zataria multiflora in pickering nanoemulsions, nanoparticles and nanophytosome. In addition, the present study assessed how these systems affected their physicochemical characteristics and antioxidant and antimicrobial activities, compared to free-essential oils. Material and Methods: Encapsulation of Zataria multiflora Boiss essential oil in nanocarriers as a novel phytoconstituents delivery system was carried out using three various methods. Physicochemical characterization of nanocarriers was studied using dynamic light scattering, Fourier transform infrared spectroscopy, field emission scanning electron microscope, confocal laser scanning microscopy, optical microscope and antioxidant activity. The minimum inhibitory and bactericidal concentration assessment effects against Listeria monocytogenes at 24 h and temperatures (10, 25 and 37 °C) were investigated. Encapsulated Zataria multiflora Boiss essential oil with subinhibitory concentrations (0.25, 0.5 and 0.75) in hamburger formulation was selected as a food model for chemical, microbiological and sensory evaluation. Results and Conclusion: In general, this study compared three types of biocarriers with free essential oils. Primarily, nanophytosome showed promising results in delaying oxidation and in antimicrobial and sensory assessments, compared to two other nanocarriers. In conclusion, essential oil nanophytosomes of Zataria multiflora Boiss include the potential as an efficient natural food preservative. Conflict of interest: The authors declare no conflict of interest

    Associations of Environmental Factors and Prevalence of Vitamin D Deficiency in Iran

    Get PDF
    Introduction: Vitamin D deficiency is a major health problem, which is unexpectedly prevalent in Iran. The ultraviolet (UV) rays of the sun are considered to be the foremost source of vitamin D in humans. In contrast, several environmental factors could decrease UV transmission to the earth, thereby reducing vitamin D absorption. Considering that the key role of environmental factors in vitamin deficiency has been neglected, the present study aimed to investigate the associations between environmental factors (e.g., geographical and air pollution parameters) with the prevalence of vitamin D deficiency in Iran. Methods: The duration of the prevalence of vitamin D deficiency were extracted from the previous studies conducted in different cities in Iran, where vitamin D deficiency was reported. Afterwards, the environmental factors that were reported to affect sunlight transmission through the atmosphere were collected based on the place and time of vitamin D deficiency as mentioned in the reviewed studies via different geographic databases. The associations between the environmental factors and prevalence of vitamin D deficiency were determined. In total, 35 studies were reviewed completely. Results: The results indicated significant correlations between the prevalence of vitamin D deficiency and some environmental factors (e.g., cloudy and clear days). However, no significant association was observed between vitamin D deficiency and other environmental factors, such as geographical parameters (e.g., sunshine, longitude, latitude, elevation, humidity, and temperature) and air pollution (e.g., number of days with dust and visibility of ≤2 km). Conclusion: According to the results, there were significant associations between the prevalence of vitamin D deficiency andenvironmental factors, such as cloudy and clear days. Therefore, adequate exposure to sunlight for the absorption of vitamin D is strongly recommended

    Bioemulsifiers Derived from Microorganisms: Applications in the Drug and Food Industry

    Get PDF
    Emulsifiers are a large category of compounds considered as surface active agents or surfactants. An emulsifier acts by reducing the speed of chemical reactions, and enhancing its stability. Bioemulsifiers are known as surface active biomolecule materials, due to their unique features over chemical surfactants, such as non-toxicity, biodegradability, foaming, biocompatibility, efficiency at low concentrations, high selectivity in different pH, temperatures and salinities. Emulsifiers are found in various natural resources and are synthesized by Bacteria, Fungi and Yeast. Bioemulsifier’s molecular weight is higher than that of biosurfactants. Emulsion’s function is closely related to their chemical structure. Therefore, the aim of this paper was to study the various bioemulsifiers derived from microorganisms used in the drug and food industry. In this manuscript, we studied organisms with biosurfactant producing abilities. These inexpensive substrates could be used in environmental remediation and in the petroleum industry

    Development of nanochitosan-based active packaging films containing free and nanoliposome caraway (Carum carvi. L) seed extract

    No full text
    The biocompatible active films were prepared based on nanochitosan (NCh) containing free and nanoliposome caraway seed extract (NLCE). The produced films were characterized by physico-mechanical, barrier, structural, color, antimicrobial, and antioxidant properties. The average particle size of NLCE was 78–122 nm, and the encapsulation efficiency (EE%) was obtained 49.87%–73.07%. Nanoliposomes with the lowest size and the highest encapsulation efficiency were merged with the film samples. NCh/CE3% and NCh/NLCE3% films had higher stability compared to other films and showed the highest antimicrobial activity (3.68 mm inhibition) and radical quenching capacity (51%), respectively. Likewise, biodegradable active films containing nanoliposomes had lower antimicrobial potential and higher antioxidant capacity than films containing free extract with similar concentration. The Fourier-transform infrared spectroscopy (FTIR) results revealed new interactions between NCh and nanoliposomes. Scanning electron microscopy (SEM) investigation also exhibited a homogenous structure and nearly smooth surface morphology with a good dispersion for NCh/NLCE films. Despite an increase in yellowness (b value) and a decrease in whiteness (L value) index, the incorporation of nanoliposomes within the NCh films improved the mechanical flexibility (from 10.2% to 15.05%) and reduced water vapor permeability (WVP) (from 14.2 × 10–12 g/m·s·Pa to 11.9 × 10–12 g/m·s·Pa). Today, due to the growing trend toward natural ingredients, the use of nanoparticles derived from plant derivatives has expanded in the food industry owing to their antimicrobial and antioxidant properties

    Rapid and sensitive detection of tetracycline residue in food samples using Cr(III)-MOF fluorescent sensor

    No full text
    As tetracycline antibiotics were used in the poultry sector, their residue in edible animal products may adversely affect food safety and human health. The development of selective and sensitive tetracycline sensors has garnered a lot of interest due to the complexity of food samples. Therefore, a fluorescent sensing probe based on chromium(III)-metal–organic framework was developed for the rapid detection of tetracycline. After the addition of tetracycline, blue emission at λem 410 nm was effectively quenched by the interaction between TC and Cr(III)-metal–organic framework material. Under optimized conditions (sensor concentration: 30 mg/L and pH: 10.0), the sensing probe showed a fast response time (1 min), and low detection limit (0.78 ng/mL) with a linear range (5–45 ng/mL). Interestingly, the Cr(III)-metal–organic framework was successfully applied to quantity tetracycline residue in chicken meat and egg samples with recoveries of 95.17–06.93%. To deduce, our work can provide a new strategy for the direct detection of tetracycline in food samples

    Smart Biopolymer-Based Nanocomposite Materials Containing pH-Sensing Colorimetric Indicators for Food Freshness Monitoring

    No full text
    Nanocomposite biopolymer materials containing colorimetric pH-responsive indicators were prepared from gelatin and chitosan nanofibers. Plant-based extracts from barberry and saffron, which both contained anthocyanins, were used as pH indicators. Incorporation of the anthocyanins into the biopolymer films increased their mechanical, water-barrier, and light-screening properties. Infrared spectroscopy and scanning electron microscopy analysis indicated that a uniform biopolymer matrix was formed, with the anthocyanins distributed evenly throughout them. The anthocyanins in the composite films changed color in response to alterations in pH or ammonia gas levels, which was used to monitor changes in the freshness of packaged fish during storage. The anthocyanins also exhibited antioxidant and antimicrobial activity, which meant that they could also be used to slow down the degradation of the fish. Thus, natural anthocyanins could be used as both freshness indicators and preservatives in biopolymer-based nanocomposite packaging materials. These novel materials may therefore be useful alternatives to synthetic plastics for some food packaging applications, thereby improving the environmental friendliness and sustainability of the food supply

    Polycaprolactone/polyacrylic acid/graphene oxide composite nanofibers as a highly efficient sorbent to remove lead toxic metal from drinking water and apple juice

    No full text
    Abstract Due to the characteristics of electrospun nanofibers (NFs), they are considered a suitable substrate for the adsorption and removal of heavy metals. Electrospun nanofibers are prepared based on optimized polycaprolactone (PCL, 12 wt%) and polyacrylic acid (PAA, 1 wt%) polymers loaded with graphene oxide nanoparticles (GO NPs, 1 wt%). The morphological, molecular interactions, crystallinity, thermal, hydrophobicity, and biocompatibility properties of NFs are characterized by spectroscopy (scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, Thermogravimetric analysis), contact angle, and MTT tests. Finally, the adsorption efficacy of NFs to remove lead (Pb2+) from water and apple juice samples was determined using inductively coupled plasma optical emission spectroscopy (ICP-OES). The average diameter for PCL, PCL/PAA, and PCL/PAA/GO NFs was 137, 500, and 216 nm, respectively. Additionally, the contact angle for PCL, PCL/PAA, and PCL/PAA/GO NFs was obtained at 74.32º, 91.98º, and 94.59º, respectively. The cytotoxicity test has shown non-toxicity for fabricated NFs against the HUVEC endothelial cell line by more than 80% survival during 72 h. Under optimum conditions including pH (= 6), temperature (25 °C), Pb concentration (25 to 50 mg/L), and time (15 to 30 min), the adsorption efficiency was generally between 80 and 97%. The adsorption isotherm model of PCL/PAA/GO NFs in the adsorption of lead metal follows the Langmuir model, and the reaction kinetics follow the pseudo-second-order. PCL/PA/GO NFs have shown adsorption of over 80% in four consecutive cycles. The adsorption efficacy of NFs to remove Pb in apple juice has reached 76%. It is appropriate and useful to use these nanofibers as a high-efficiency adsorbent in water and food systems based on an analysis of their adsorption properties and how well they work

    Bionanocomposite Active Packaging Material Based on Soy Protein Isolate/Persian Gum/Silver Nanoparticles; Fabrication and Characteristics

    No full text
    In this study, nanocomposite active films were fabricated containing silver nanoparticles (SNPs) embedded within soy protein isolate (SPI)/Persian gum (PG) matrices. The physical, mechanical, and antibacterial properties of these composite films were then characterized. In addition, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD) were used to provide information about the microstructure, interactions, and crystallinity of the films. Pure SPI films had poor physicochemical attributes but the addition of PG (0.25, 0.5, or 1 wt%) improved their water vapor permeability, mechanical properties, and water solubility (WS). The moisture content (MC) of the films decreased after the introduction of PG, which was attributed to fewer free hydroxyl groups to bind to the water molecules. Our results suggest there was a strong interaction between the SPI and the PG and SNPs in the films, suggesting these additives behaved like active fillers. Optimum film properties were obtained at 0.25% PG in the SPI films. The addition of PG (0.25%) and SNPs (1%) led to a considerable increase in tensile strength (TS) and a decrease in elongation at break (EB). Furthermore, the incorporation of the SNPs into the SPI/PG composite films increased their antibacterial activity against pathogenic bacteria (Escherichia coli and Staphylococcus aureus), with the effects being more prominent for S. aureus. Spectroscopy analyses provided insights into the nature of the molecular interactions between the different components in the films. Overall, the biodegradable active films developed in this study may be suitable for utilization as eco-friendly packaging materials in the food industry
    corecore