Biopolymeric Nanoparticles, Pickering Nanoemulsions and Nanophytosomes for Loading of Zataria multiflora Essential Oil as a Biopreservative

Abstract

Background and Objective: Essential oils include low solubility, poor bioavailability and rapid release, which may limit their use as bioactive compounds in foods and medicine. Nanoencapsulation can preserve inherent qualities of essential oils and improve their physicochemical characteristics and health benefits. Focus of the present study was on the loading of essential oils from Zataria multiflora in pickering nanoemulsions, nanoparticles and nanophytosome. In addition, the present study assessed how these systems affected their physicochemical characteristics and antioxidant and antimicrobial activities, compared to free-essential oils. Material and Methods: Encapsulation of Zataria multiflora Boiss essential oil in nanocarriers as a novel phytoconstituents delivery system was carried out using three various methods. Physicochemical characterization of nanocarriers was studied using dynamic light scattering, Fourier transform infrared spectroscopy, field emission scanning electron microscope, confocal laser scanning microscopy, optical microscope and antioxidant activity. The minimum inhibitory and bactericidal concentration assessment effects against Listeria monocytogenes at 24 h and temperatures (10, 25 and 37 °C) were investigated. Encapsulated Zataria multiflora Boiss essential oil with subinhibitory concentrations (0.25, 0.5 and 0.75) in hamburger formulation was selected as a food model for chemical, microbiological and sensory evaluation. Results and Conclusion: In general, this study compared three types of biocarriers with free essential oils. Primarily, nanophytosome showed promising results in delaying oxidation and in antimicrobial and sensory assessments, compared to two other nanocarriers. In conclusion, essential oil nanophytosomes of Zataria multiflora Boiss include the potential as an efficient natural food preservative. Conflict of interest: The authors declare no conflict of interest

    Similar works