103 research outputs found
A hierarchical Bayesian model for inference of copy number variants and their association to gene expression
A number of statistical models have been successfully developed for the
analysis of high-throughput data from a single source, but few methods are
available for integrating data from different sources. Here we focus on
integrating gene expression levels with comparative genomic hybridization (CGH)
array measurements collected on the same subjects. We specify a measurement
error model that relates the gene expression levels to latent copy number
states which, in turn, are related to the observed surrogate CGH measurements
via a hidden Markov model. We employ selection priors that exploit the
dependencies across adjacent copy number states and investigate MCMC stochastic
search techniques for posterior inference. Our approach results in a unified
modeling framework for simultaneously inferring copy number variants (CNV) and
identifying their significant associations with mRNA transcripts abundance. We
show performance on simulated data and illustrate an application to data from a
genomic study on human cancer cell lines.Comment: Published in at http://dx.doi.org/10.1214/13-AOAS705 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Incorporating biological information into linear models: A Bayesian approach to the selection of pathways and genes
The vast amount of biological knowledge accumulated over the years has
allowed researchers to identify various biochemical interactions and define
different families of pathways. There is an increased interest in identifying
pathways and pathway elements involved in particular biological processes. Drug
discovery efforts, for example, are focused on identifying biomarkers as well
as pathways related to a disease. We propose a Bayesian model that addresses
this question by incorporating information on pathways and gene networks in the
analysis of DNA microarray data. Such information is used to define pathway
summaries, specify prior distributions, and structure the MCMC moves to fit the
model. We illustrate the method with an application to gene expression data
with censored survival outcomes. In addition to identifying markers that would
have been missed otherwise and improving prediction accuracy, the integration
of existing biological knowledge into the analysis provides a better
understanding of underlying molecular processes.Comment: Published in at http://dx.doi.org/10.1214/11-AOAS463 the Annals of
Applied Statistics (http://www.imstat.org/aoas/) by the Institute of
Mathematical Statistics (http://www.imstat.org
Bayesian variable selection for high dimensional predictors and self-reported outcomes
BACKGROUND: The onset of silent diseases such as type 2 diabetes is often registered through self-report in large prospective cohorts. Self-reported outcomes are cost-effective; however, they are subject to error. Diagnosis of silent events may also occur through the use of imperfect laboratory-based diagnostic tests. In this paper, we describe an approach for variable selection in high dimensional datasets for settings in which the outcome is observed with error.
METHODS: We adapt the spike and slab Bayesian Variable Selection approach in the context of error-prone, self-reported outcomes. The performance of the proposed approach is studied through simulation studies. An illustrative application is included using data from the Women\u27s Health Initiative SNP Health Association Resource, which includes extensive genotypic ( \u3e 900,000 SNPs) and phenotypic data on 9,873 African American and Hispanic American women.
RESULTS: Simulation studies show improved sensitivity of our proposed method when compared to a naive approach that ignores error in the self-reported outcomes. Application of the proposed method resulted in discovery of several single nucleotide polymorphisms (SNPs) that are associated with risk of type 2 diabetes in a dataset of 9,873 African American and Hispanic participants in the Women\u27s Health Initiative. There was little overlap among the top ranking SNPs associated with type 2 diabetes risk between the racial groups, adding support to previous observations in the literature of disease associated genetic loci that are often not generalizable across race/ethnicity populations. The adapted Bayesian variable selection algorithm is implemented in R. The source code for the simulations are available in the Supplement.
CONCLUSIONS: Variable selection accuracy is reduced when the outcome is ascertained by error-prone self-reports. For this setting, our proposed algorithm has improved variable selection performance when compared to approaches that neglect to account for the error-prone nature of self-reports
Identifying Biomarkers from Mass Spectrometry Data with Ordinal Outcome
In recent years, there has been an increased interest in using protein mass spectroscopy to identify molecular markers that discriminate diseased from healthy individuals. Existing methods are tailored towards classifying observations into nominal categories. Sometimes, however, the outcome of interest may be measured on an ordered scale. Ignoring this natural ordering results in some loss of information. In this paper, we propose a Bayesian model for the analysis of mass spectrometry data with ordered outcome. The method provides a unified approach for identifying relevant markers and predicting class membership. This is accomplished by building a stochastic search variable selection method within an ordinal outcome model. We apply the methodology to mass spectrometry data on ovarian cancer cases and healthy individuals. We also utilize wavelet-based techniques to remove noise from the mass spectra prior to analysis. We identify protein markers associated with being healthy, having low grade ovarian cancer, or being a high grade case. For comparison, we repeated the analysis using conventional classification procedures and found improved predictive accuracy with our method
Bayesian Variable Selection Methods for Matched Case-Control Studies
Abstract Matched case-control designs are currently used in many biomedical applications. To ensure high efficiency and statistical power in identifying features that best discriminate cases from controls, it is important to account for the use of matched designs. However, in the setting of high dimensional data, few variable selection methods account for matching. Bayesian approaches to variable selection have several advantages, including the fact that such approaches visit a wider range of model subsets. In this paper, we propose a variable selection method to account for case-control matching in a Bayesian context and apply it using simulation studies, a matched brain imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular biomarker study conducted by the High Risk Plaque Initiative
Placental Genome and Maternal-Placental Genetic Interactions: A Genome-Wide and Candidate Gene Association Study of Placental Abruption
While available evidence supports the role of genetics in the pathogenesis of placental abruption (PA), PA-related placental genome variations and maternal-placental genetic interactions have not been investigated. Maternal blood and placental samples collected from participants in the Peruvian Abruptio Placentae Epidemiology study were genotyped using Illuminaās Cardio-Metabochip platform. We examined 118,782 genome-wide SNPs and 333 SNPs in 32 candidate genes from mitochondrial biogenesis and oxidative phosphorylation pathways in placental DNA from 280 PA cases and 244 controls. We assessed maternal-placental interactions in the candidate gene SNPS and two imprinted regions (IGF2/H19 and C19MC). Univariate and penalized logistic regression models were fit to estimate odds ratios. We examined the combined effect of multiple SNPs on PA risk using weighted genetic risk scores (WGRS) with repeated ten-fold cross-validations. A multinomial model was used to investigate maternal-placental genetic interactions. In placental genome-wide and candidate gene analyses, no SNP was significant after false discovery rate correction. The top genome-wide association study (GWAS) hits were rs544201, rs1484464 (CTNNA2), rs4149570 (TNFRSF1A) and rs13055470 (ZNRF3) (p-values: 1.11e-05 to 3.54e-05). The top 200 SNPs of the GWAS overrepresented genes involved in cell cycle, growth and proliferation. The top candidate gene hits were rs16949118 (COX10) and rs7609948 (THRB) (p-values: 6.00e-03 and 8.19e-03). Participants in the highest quartile of WGRS based on cross-validations using SNPs selected from the GWAS and candidate gene analyses had a 8.40-fold (95% CI: 5.8ā12.56) and a 4.46-fold (95% CI: 2.94ā6.72) higher odds of PA compared to participants in the lowest quartile. We found maternal-placental genetic interactions on PA risk for two SNPs in PPARG (chr3ā¶12313450 and chr3ā¶12412978) and maternal imprinting effects for multiple SNPs in the C19MC and IGF2/H19 regions. Variations in the placental genome and interactions between maternal-placental genetic variations may contribute to PA risk. Larger studies may help advance our understanding of PA pathogenesis
- ā¦