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Abstract

Matched case-control designs are currently used in many biomedical applications. To ensure high 

efficiency and statistical power in identifying features that best discriminate cases from controls, it 

is important to account for the use of matched designs. However, in the setting of high 

dimensional data, few variable selection methods account for matching. Bayesian approaches to 

variable selection have several advantages, including the fact that such approaches visit a wider 

range of model subsets. In this paper, we propose a variable selection method to account for case-

control matching in a Bayesian context and apply it using simulation studies, a matched brain 

imaging study conducted at Massachusetts General Hospital, and a matched cardiovascular 

biomarker study conducted by the High Risk Plaque Initiative.
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1 Introduction

In matched case-control studies, subjects from a particular diagnostic group(s) (cases) are 

matched with those from a comparison group(s) (controls) based on important demographic 

characteristics, such as age or gender. Matching on these potential confounders can result in 
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substantial improvements in efficiency and statistical power to identify feature variables that 

are associated with case-control status [1]. Matched case-control studies are becoming 

increasingly popular in studies involving high dimensional data that aim to identify subsets 

of relevant features. Examples include brain imaging studies aimed at identifying brain 

regions associated with comorbidities or genomic studies focused on discovery of cancer 

biomarkers. Despite the popularity of matched high dimensional studies, it is quite common 

for these studies to ignore the matched design used when applying variable selection 

techniques (e.g., Anglim et al. [2], Westman et al. [3]). Failure to account for matching has 

been shown to decrease variable selection accuracy [1] and lead to biased results [4].

Currently, there are several frequentist variable selection approaches for matched high 

dimensional data that incorporate case-control matching. Tan et al. [5] develop a modified 

paired t-test statistic to identify a subset of relevant features that serves as a basis for 

classification via support vector machines (SVM). Although matching is accounted for with 

respect to variable selection, it is ignored with respect to building the SVM classifier. In 

addition, their approach of identifying relevant features involves univariate tests, which do 

not control for the effects of other features and, thus, can lead to spurious identification of 

relevant features. Adewale et al. [6] develop two modified versions of boosting for correlated 

binary response data. The first version utilizes a loss function for the generic gradient 

descent boosting algorithm [7] that handles correlated binary responses. The second version 

modifies the likelihood optimization boosting algorithm [7] via a generalized linear mixed 

modeling approach in order to handle correlated binary responses. However, boosting 

approaches may have trouble identifying interactions among different features [1] and have 

decreased accuracy for data sets with relatively small sample sizes [8]. In matched studies, a 

standard analytic approach to identify features significantly associated with case-control 

status is conditional logistic regression (hereafter denoted as CLR) modeling. However, for 

high dimensional data sets, CLR can not only become computationally intensive, but can 

also quickly run into model convergence problems. To address these computational issues, 

Balasubramanian et al. [1] develop a random penalized CLR (hereafter denoted as R-PCLR) 

variant that merges ridge penalized CLR [9] with Random Forests [10] to identify relevant 

features and two-way interactions. In addition, Qian et al. [11] develop two selection 

methods based on the conditional and unconditional logistic likelihood functions, as well as 

the lasso and elastic net penalties [12, 13]. Their first method uses a two-stage approach to 

estimate the logistic regression parameters that are subsequently used to predict case-control 

status, while their second method simultaneously computes both the regression coefficient 

estimates and the predicted values for case-control status.

Alternately, one can approach variable selection from a Bayesian standpoint, which has 

several important benefits. With regards to variable selection, penalized methods identify 

features for inclusion by determining which of them have nonzero model coefficient 

estimates. Bayesian variable selection (BVS) provides more information by giving not only 

coefficient estimates, but also inclusion probability estimates for each feature. One common 

BVS approach utilizes the spike and slab prior [14–16], which involves assigning 

hierarchical priors to the regression coefficients by introducing indicator variables to 

determine whether each predictor should be considered for inclusion or removal from the 

model. The use of this prior is fairly widespread among BVS techniques [17–21], mainly 
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due to its flexibility and ease of application, particularly for high dimensional data [22]. Lee 

et al. [23], Sha et al. [24], and Zhou et al. [25] all developed BVS approaches based on 

spike-and-slab priors [14–16] for binary outcomes, with applications to genetic microarray 

data. While [23] and Sha et al. [24] developed their approach using multinomial probit 

models by introducing latent variables, Zhou et al. [25] used logistic models. BVS methods 

have also yielded relatively high selection accuracy for linear regression [16, 26], and have 

been shown to efficiently handle ultra-high dimensional data sets [27]. Another key benefit 

of BVS is that it can naturally incorporate auxiliary information regarding different spatial, 

network, or other correlation or grouping structures among features. For instance, Smith and 

Fahrmeir [28] incorporate spatial correlation among features with direct applications to 

imaging data, while Stingo et al. [29] account for membership in a particular genetic 

pathway and the relationship among genes in that pathway.

To account for matching in BVS, we can specify the likelihood based on a CLR model. 

Based on the key benefits of BVS and CLR modeling, we propose a new methodology that 

formulates BVS in a CLR framework (hereafter denoted as BVS CLR) and evaluate its 

performance using simulation and actual studies. For comparative purposes, we also 

examine the performance of CLR using the lasso penalty (denoted as lasso CLR). In our 

applications to actual studies, we also assess the performance of BVS CLR relative to that of 

R-PCLR and the methods proposed by Qian et al. [11], both of which were based on lasso 

penalized conditional logistic likelihood functions. Several penalties exist for variable 

selection, e.g., elastic net, group lasso [30, 31], and sparse group lasso [32]. Since the 

variable selection method we propose does not take the correlation or group structure among 

features into account, it is more comparable to lasso. In addition, we compare our approach 

with that of the lasso penalty because of its ease of implementation for CLR using available 

software (e.g., R) relative to other variable selection penalties, e.g., SCAD [33] or adaptive 

lasso [34].

In Section 2, we specify the CLR model for paired data and describe our selection approach. 

We evaluate the performance of BVS CLR relative to lasso CLR using simulation studies in 

Section 3. In Section 4, we assess the performance of BVS CLR relative to lasso CLR, as 

well as R-PCLR and the selection approach of Qian et al. [11] which account for matching, 

using a matched brain imaging study of hospital acquired pneumonia (HAP) among stroke 

patients in Massachusetts General Hospital (MGH). We then perform a similar assessment in 

Section 5 using a matched study of biomarkers for near-term cardiovascular events, where 

we compare the performance of BVS CLR with that of lasso CLR and R-PCLR. In Section 

6, we conclude with a discussion.

2 Bayesian Variable Selection for Paired Case-Control Data

Consider I case-control pairs, where Xij= (Xij1, … , XijK) denotes the observed feature 

values and Zij denotes case-control status for the Jth member of the ith pair (i = 1, … , I; J = 

1, 2), so that Zij = 1 for cases and 0 for controls. CLR models the probability that the first 

member of pair i is a case, given (Xi1, Xi2) and Zi1 + Zi2 = 1, as follows:
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(1)

where βk denotes the coefficient or log odds ratio for feature Xk. For features with an effect 

on case-control status, i.e., relevant features, βk is nonzero. From eq. (1), the conditional log-

likelihood is given by

(2)

We now introduce γ = (γ1, … , γK), a binary vector where γk is either 1 or 0 based on 

whether Xk is retained in eq. (1). We assign a mixture of normal and point mass priors to the 

coefficient vector β = (β1, … , βK), where βk|γk ~ γkN(0, σ2) + (1 − γk)δ0, δ0 corresponds 

to π(βk = 0) = 1 and σ2 < 0. In addition, γk|ω ~ Bernoulli(ω), where ω ~ Beta(c, d) and c, d 
< 0.

Based on the prior assumptions and the conditional likelihood in eq. (2), the posterior 

distribution of γ and β is

(3)

such that  and .

We use Markov chain Monte Carlo (MCMC) sampling via the Metropolis-Hastings (MH) 

algorithm to estimate the distribution in eq. (3). Starting from random initial values for β and 

γ, we apply the following moves at each of S MCMC iterations:

1. Move 1

• Add or remove Xr (r ∈ {1, … , K}) by choosing γr at random and changing its 

state, i.e., , where  and  denote the proposed and current values 

of γr. If , generate the proposed  value for Xr from , where 

τ1(> 0) is a proposal tuning parameter and  is the estimated variance 

corresponding to the MLE of βr from a univariate CLR model on Xr. Otherwise, 

let .

• Based on the posterior probabilities p(β, γ|X, Z) and proposal densities q(·|β, γ) 

and q(·|γ), compute the acceptance ratio
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(4)

Accept the proposed values (β*, γ*) with probability min(A, 1) and retain the 

current values (β(t), γ(t)) otherwise.

2. Move 2

• For each included Xk, i.e., Xk with , generate the proposed  value from 

, where  denotes the current value of βk, τ2(> 0) is a proposal 

tuning parameter, and  is the variance estimate for the univariate CLR MLE of 

βk.

• Since we do not update γ and only update the β values for the included Xk, the 

acceptance ratio in eq. (4) reduces to

Accept the proposed values β* with probability min(A, 1) and retain the current 

values β(t) otherwise.

For each move type, we neither wanted to have proposal variances that are too small to avoid 

encountering mixing issues and high autocorrelations, nor did we want to have variances 

that are too large to avoid low acceptance rates. According to Gelman et al. [35] and Roberts 

et al. [36], asymptotically optimal acceptance rates for random walk Metropolis algorithms 

are approximately equal to 25%. Therefore, τ1 and τ2 are chosen to ensure that the 

acceptance rates for each move type are between 20% and 30%. Alternately, we could have 

used an adaptive MH algorithm, as in Lamnisos et al. [37]. However, the standard MH 

algorithm that we specify has good convergence properties and is easy to implement.

We then obtain the sequence {(β[1], γ[1]), … , (β[S], γ[S])}. Assuming a burn-in period of B 
iterations, estimates of the posterior inclusion probabilities p(γk|X, Z ) and coefficients βk 

are given by

(5)

A similar averaging approach can be used to obtain variance estimates of βk̂.

Since we use standard spike-and-slab priors and Metropolis-Hastings moves to update the 

model parameters, the ergodicity of our MCMC sampler is guaranteed. The introduction of 
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Move 2 does not compromise ergodicity; it is used to provide faster convergence by refining 

the parameter space within the selected model. To determine the convergence of β and γ in 

our later applications of BVS CLR to actual data, we consider a multivariate version of 

Gelman and Rubin’s potential scale reduction factor using the coda R package, where values 

substantially above 1 indicate lack of convergence [38, 39].

3 Simulation Studies

We first assess the operating performance of BVS CLR using several simulated datasets. In 

doing so, we focus on the level of accuracy in identifying the relevant and non-relevant 

features and in predicting case-control status. We also assess coefficient estimation accuracy 

by examining the mean squared error (MSE) of the βk estimates. In our study, we examine 

the performance of BVS CLR relative to that of lasso CLR with respect to selection and 

prediction accuracy. Although variance estimation approaches for lasso regression exist [40, 

41], we take a more straightforward approach and consider, for both BVS and lasso CLR, a 

rough MSE approximation using the empirical mean of the squared deviations between the 

estimated and actual βk values. We run all analyses using R software version 3.1.2 [42].

3.1 Simulation Designs

3.1.1 Simulation of Paired Response and Feature Data—First, we simulate M = 10, 

000 observations for variables we term as age and gender. Gender values are generated from 

a Bernoulli(0.5) distribution. Age values are generated from a truncated normal distribution 

in the range (0, 60) with mean 30 and variance 100, and then rounded to the nearest integer. 

To examine the performance of BVS CLR for different data types, we consider the cases of 

binary and normal features. To simulate X values such that the first L (L < K) features are 

related to gender and standardized age and the first Q (Q < L < K) features are relevant, we 

use the following approach:

• Binary case Assume pm,k = P(Xk = 1) = {1 + exp [age.stdm + 1.5genderm]}−1 

for observation m (m = 1, … , M) for k = 1, … , L and pm,k = 0.5 otherwise, 

where age.stdm and genderm denote standardized age and gender for observation 

m. Each age value is standardized by subtracting its mean value and dividing by 

its standard deviation. Since age is included as a linear effect in our model for 

simulating case-control status pm,k, we standardize age to ensure that the 

regression coefficient we use corresponds to a reasonable effect size. To build 

correlation among (Xm,1, … , Xm,K), we specify correlation matrix Σ with entries 

ρij obtained from the phi coefficients computed from the MGH brain imaging 

data, where a phi coefficient measures the association between a pair of binary 

features. We consider the cases of both high correlation (ρij obtained from the 

phi coefficients ranked in the top 50 in absolute value for X1, … , XQ; ρij 

obtained from the remaining phi coefficient values for XQ+1, … , XK; X1, … , 

XQ are uncorrelated with XQ+1, … , XK) and low correlation (for X1, … , XK, ρij 

obtained from the phi coefficient values not ranked in the top 50 in absolute 

value) among the K features. Observations (Xm,1, … , Xm,K) are simulated using 

the bindata R package.
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• Normal case Using the mvtnorm R package, we generate Xm,k from a normal 

distribution with mean age.stdm + 1.5 · genderm for k = 1, … , L and 0 otherwise 

and covariance matrix Σ with entries ρij equal to the correlation coefficients 

computed from the matched biomarker study discussed in Section 5. As in the 

binary case, we consider the cases of both high correlation (ρij obtained from the 

correlation values ranked in the top 50 in absolute value for X1, … , XQ; ρij 

obtained from the remaining correlation values for XQ+1, … , XK; X1, … , XQ 

are uncorrelated with XQ+1, … , XK) and low correlation (for X1, … , XK, ρij 

obtained from the correlation values not ranked in the top 50 in absolute value) 

among the K features.

Case-control status Zm is generated from a Bernoulli(φm) distribution with 

, 

where cen.agem denotes the value of age for observation m that has been centered to have 

mean 0. Here, β1, … , βQ fall in the range [1, 2] in magnitude in the binary case, and [1, 1.3] 

in the normal case. For each data type, values for β1, … , βQ, which capture effect sizes for 

the relevant features on the log odds scale, were chosen to ensure obtaining realistic odds 

ratios. In the normal case, BVS CLR did not converge when β1, … , βQ fell in the range [1, 

2]. Our predictors in this case were not standardized and had a fairly wide range of values, 

which leads to large values for the linear predictors and, thus, a log-likelihood that diverges. 

Therefore, we decreased the range of values in the normal case, relative to the binary case. 

All remaining β elements are set to zero in both cases. From this population, we randomly 

select I = 50 or I = 200 observations with Zm = 1 as cases and match them with observations 

with Zm = 0 (controls) based on age and gender, and let these (Xij, Zij) observations 

constitute the training set. Omitting this set, we randomly select N.= 2, 000 (Xn, Zn) (n = 1, 

… , N) observations from the remaining population to constitute the test set. We also 

consider the following scenarios:

1. Scenario 1: K = 20 features, where Q = 2, 5, 10 are relevant

2. Scenario 2: K = 100 features, where Q = 10, 25, 50 are relevant

3. Scenario 3: K = 600 features, where Q = 60, 150, 300 are relevant

For each data type (binary/normal), correlation level, and scenario, we simulate 100 datasets 

for scenarios 1 and 2, and 20 datasets for scenario 3 due to the amount of computation time 

involved. Each dataset consists of a training set and test set as previously discussed. We now 

describe how BVS and lasso CLR are applied to each dataset.

3.1.2 Application of BVS CLR—We first apply BVS CLR to each training set, where we 

set the prior variance σ2 for βk|γk to 1. Since the estimated standard errors for the univariate 

CLR coefficient estimates were all in the 10−2 range in this study, a value of 1 for σ2 is fairly 

noninformative in this case. To ensure that a sufficient number of features are considered for 

inclusion, we assign a Beta(5, 5) prior to ω in all scenarios. Although we omit their results 

in our discussion, we note that preliminary analyses have demonstrated the robustness of 

BVS CLR to specification of both σ2 (values considered ranged from 0.1 to 10) and the 

Beta(c, d) prior.
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We run BVS CLR for S = 50, 000 iterations (B = 20, 000 burn-in) in scenario 1, S = 80, 000 

iterations (B = 30, 000 burn-in) in scenario 2, and S = 100, 000 iterations (B = 50, 000 burn-

in) in scenario 3. Along with the estimates p(γ̂k = 1|X, Z) and β̂k in (5), we compute the 

variance estimates of βirc;k. For each post burn-in iteration v (v = B + 1, … , S), we 

compute the estimated case probability  for the nth 

test set observation. Using , we compute the Bayesian model averaged (BMA) case 

probability p̂n,BMA using the following approaches: (1) average , (2) average 

, where  if  and 0 otherwise, and (3) generate  from a 

Bernoulli ( ) distribution and average . We discuss the results obtained 

using the first approach, although all three approaches give similar results.

3.1.3 Application of Lasso CLR—We also examine the performance of lasso CLR, 

which is based on the penalized conditional log-likelihood

(6)

In eq. (6), the feature values are standardized and λ ≥ 0 is a tuning parameter that is 

typically estimated using V-fold cross validation. Use of the lasso penalty in eq. (6) shrinks 

all βk estimates to zero, yielding a subset of features found to be relevant in eq. (1) due to 

having nonzero βk estimates. Using the survival and penalized R packages, we apply 10-

fold cross-validation to estimate λ and run lasso CLR on each training set, yielding 

coefficient estimates β̂k,las and case probability estimates 

 for the nth test set observation.

A schematic diagram summarizing the simulation details, and BVS and lasso CLR 

applications, is provided in Figure 1.

3.2 Variable Selection Accuracy

To measure selection accuracy for BVS and lasso CLR, we compute the areas under the 

ROC curves (AUCs) using inclusion probability estimates p(γ̂k = 1|X, Z) for BVS CLR and 

the magnitudes of the coefficient estimates |β̂k,las| for lasso CLR. The AUC was used as a 

metric for selection accuracy because it gives an overall picture of the degree to which we 

can correctly identify relevant and non-relevant features. However, we acknowledge that, in 

practice, we would have to rely on the use of a defined threshold for identifying relevant and 

non-relevant features.

We present the median and interquartile range (IQR) values for these AUCs across 

simulations in the normal and binary cases for scenarios 1 and 2 in Appendix Table 5 and for 

scenario 3 in Appendix Table 6. For both approaches, we have that, regardless of the number 

of pairs I, data type, and correlation level among the relevant features, selection accuracy 
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decreases as the total number of features K increases for a given number of relevant features 

Q, and as Q increases for a given K. We also have that for both approaches, selection 

accuracy increases with increasing I for a given Q and K, regardless of data type and 

correlation level. Also, as the level of correlation among the relevant features increases from 

low to high, selection accuracy remains comparable (magnitude of difference less than 0.05) 

or decreases in both the normal and binary cases. In cases where selection accuracy 

decreases, we have that the decrease is generally more pronounced for lasso CLR.

Regardless of the percentage of relevant features, BVS CLR generally yields higher 

selection accuracy than lasso CLR in the normal and binary cases when K = 100 features 

and I = 50 pairs. We also note an improved performance of BVS CLR for normally 

distributed features with high correlation when K = 100 features and I = 200 pairs. With K = 

20 features, BVS CLR yields higher accuracy for the binary high correlation case with I = 

50 regardless of the percentage of relevant features. When 25% and 50% of the features are 

relevant, this improved accuracy is also observed for the binary low correlation case and for 

the normal high correlation setting. With K = 600 features, the two methods have a 

comparable performance.

3.3 Prediction Accuracy

We also examine prediction accuracy for BVS and lasso CLR, which we measure using the 

AUCs based on the predicted case probabilities p̂n,BMA and p̂n,las. For each approach, the 

median and IQR values for these AUCs across simulations are presented in Appendix Table 

8 for scenarios 1 and 2 and in Appendix Table 9 for scenario 3.

In general, prediction accuracy is higher for the normal datasets than for the binary datasets, 

and also increases as the number of pairs I increases. Also, prediction accuracy is highest 

when 25% of the features are relevant for K = 20, 100, and remains comparable across the 

number of relevant features Q for K = 600.

BVS CLR has higher prediction accuracy than lasso CLR for the simulation setting with I = 

50 pairs when K = 100 features and 50% of them are relevant, for both normal and binary 

cases with low or high correlation. We also observe improved prediction accuracy of BVS 

CLR for K = 600 features with 50% relevant in all cases (normal, binary, low or high 

correlation, I =50 or 200 pairs). For K = 600 with 25% relevant, BVS CLR has higher 

prediction accuracy in all cases when I = 50 pairs, and for the normal setting when I = 200 

pairs. For K = 600 features with 10% relevant, BVS CLR has higher prediction accuracy for 

the normal low correlation case with I = 50 pairs. For all other settings, we find comparable 

prediction performance between BVS CLR and lasso CLR.

3.4 MSE for Coefficient Estimates

For each scenario, we then assess the level of coefficient estimation accuracy for BVS and 

lasso CLR by examining the average MSE for each feature across simulations, and then 

computing the median of these averaged MSEs across the relevant features and the non-

relevant features. These results are reported in Appendix Table 11 and Table 13 for the 

relevant and non-relevant features, respectively.
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Relative to lasso CLR, these median MSEs are generally lower for BVS CLR with respect to 

the relevant features and comparable with respect to the non-relevant features regardless of 

data type, correlation level among the relevant features, number of pairs, number of features 

(total and relevant). With fewer pairs, this decrease in MSE for BVS CLR with respect to the 

relevant features is more pronounced. For both approaches, we see that MSEs for the 

relevant features are generally larger for binary datasets, increase as the total number of 

features K and number of relevant features Q increase, and decrease as the number of pairs I 
increases. However, no apparent pattern emerges in our results as we increase the correlation 

level among the relevant features.

Although we do not present the results in our discussion, the level of estimation accuracy for 

BVS CLR was also assessed using coverage probabilities based on the 95% highest 

posterior density (HPD) intervals for each coefficient. In doing so, we observed high 

coverage probabilities across features and HPD intervals with widths that grew narrower 

with increasing I.

3.5 Convergence of BVS CLR

To explore the convergence performance of BVS CLR, we examine, across post burn-in 

iterations, trace plots of the log posterior probabilities in Figure 5 and the number of selected 

features in Figure 7 for the normal case when I = 50 pairs and 25% of the features are 

relevant and weakly correlated. Based on these plots, we do not see any evidence of non-

convergence. Although we omit their results, similar patterns are found in the trace plots for 

all other simulation scenarios, data types, number of pairs, and levels of correlation among 

the relevant features. To explore the behavior of features with the highest inclusion 

probabilities, we consider, as an example, the case of K = 20 normal features of which Q = 5 

are relevant and weakly correlated. For this case, we examine in Figure 8 a trace plot of the 

inclusion status (yes/no) across post burn-in iterations in one simulation for features X1, X3, 

X4 whose inclusion probabilities are ranked among the top three for I = 50 pairs.

3.6 Accuracy under Reduced Coefficient Values

To assess the performance of BVS CLR relative to lasso CLR in the case when β1, … , βQ 

for the relevant features are relatively small, we also consider the case where β1, … , βQ fall 

in the range [0.3, 0.7] in magnitude, in scenarios 1 (K = 20 features) and 2 (K = 100 

features). For both the binary and normal cases, the median and IQR values for the selection 

and prediction accuracy AUCs across simulations are reported in Appendix Table 7 and 

Table 10, respectively. In Appendix Table 12 and Table 14, we report the medians of the 

averaged MSEs across the relevant features and across the non-relevant features, 

respectively. In summary, relative to when β1, … , βQ are at least 1, the improvement in 

performance for BVS CLR compared with lasso CLR is more pronounced with respect to 

selection accuracy, relatively unchanged with respect to prediction accuracy and MSE for 

the non-relevant features, and less pronounced with respect to MSE for the relevant features.
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4 Application to MGH HAP Imaging Study

4.1 Description

We first examine a case-control brain imaging study conducted by Kemmling et al. [43], in 

which acute ischemic stroke patients admitted to the Stroke Service Unit at MGH stroke 

service were classified according to whether or not they met the criteria for having hospital 

acquired pneumonia (HAP), i.e., suspicion or mention of pneumonia in the patient’s medical 

record at least 48 hours after admission requiring antibiotic treatment. 215 acute ischemic 

stroke patients classified as having HAP were then matched with 215 non-HAP acute 

ischemic stroke patients on the basis of age, gender, and NIH stroke scale (NIHSS) upon 

admission. In this study, each patient was measured on both clinical and neuroimaging 

features. Clinical features include age, gender, admission NIHSS, length of hospitalization, 

as well as the presence/absence of the following: dysphagia, dyslipidemia, smoking history, 

coronary artery disease, diabetes mellitus, atrial fibrillation, hypertension, and in-hospital 

mortality. In Table 1, we present the summary statistics for each of these features.

To extract the neuroimaging features for each patient, subacute ischemic brain lesions were 

first outlined slice-by-slice in diffusion weighted magnetic resonance imaging (MRI-DWI) 

or computerized tomography (CT) images, each of which were chosen with an acquisition 

time approximately 48 hours after symptom onset. MRI-DWI/CT images and their 

respective binary lesion masks were affine registered to standard MNI-152 space and 

manually corrected for registration errors. The same imaging protocol was used for all 

patients.

All lesion masks were then segmented into 68 pairs (left-right hemispheres) of cortical and 

subcortical/brainstem white matter brain regions based on the “Johns Hopkins University 

white-matter” and “Harvard-Oxford cortical structural” atlases, which were created by 

standardized anatomic labeling of multiple subjects linearly registered to MNI-152 standard 

space [44, 45]. Binarized atlases defining a specific structure with at least 25% probability of 

anatomic localization were used. For all patients, the percentage of infarction in a specific 

brain region was first measured and then dichotomized using its median value as having zero 

or positive infarction. Specifically, the neuroimaging feature examined for each brain region 

was the presence/absence of positive infarction in that region. Given the relatively small 

sample size, brain regions with positive infarction for less than 5% of HAP patients or non-

HAP patients will yield unstable log odds ratio estimates [11]. Therefore, to stabilize 

calculations, we only consider the 130 brain regions that have positive infarction for at least 

5% of HAP patients and 5% of non-HAP patients. Another examined neuroimaging feature 

was infarction volume. To avoid model fitting issues due to its highly skewed distribution 

and the presence of outliers, we categorized infarction volume using the tertiles of its 

distribution. Two indicator variables were introduced to indicate whether infarction volume 

was at least equal to its first tertile, and whether it was at least equal to its second tertile.

In applying our proposed methodology, we aim to identify the subset of clinical and 

neuroimaging features that are most associated with, or most relevant to, having HAP. 

Although there is not necessarily a link between HAP and white matter infarctions, per se, 

associations between HAP and infarctions in specific brain regions have been found in prior 
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studies. Kemmling et al. [43] showed that infarction in the right hemispheric peri-insular 

cortical regions was associated with the risk of acquiring HAP in acute ischemic stroke 

patients. They explain this finding by discussing the fact that previous studies have 

demonstrated the association of the right insular region with autonomically-induced 

immunosuppression and susceptibility to infection [46–48], as well as the association of 

right hemispheric peri-insular infarction to autonomic dysfunction and pathologic 

sympathetic activity [49].

In this application, we evaluate the performance of BVS CLR, and also assess its 

performance relative to lasso CLR, R-PCLR, and the selection approach of Qian et al. [11].

4.2 Method

We run BVS and lasso CLR in 50 parallel chains, i.e., both methods are applied to the data 

set 50 times, where a different random seed is used in each instance. To each chain, we 

apply (1) BVS CLR to obtain inclusion probability estimates p̂(γk = 1|X, Z), and (2) lasso 

CLR to obtain coefficient estimates β̂k,las, where 10-fold cross-validation is used to estimate 

the tuning parameter λ in eq. (6). In applying BVS CLR, we use S = 80, 000 iterations (B = 

40, 000 burn-in) for each chain. As in our simulation study, we set the variance σ2 in our 

normal prior for βk|γk to 1 and assign a Beta(5, 5) prior to ω. We retained these values due 

to the robustness of BVS CLR to the specification of σ2 and the Beta(c, d) prior that we 

observed in preliminary analyses for our simulation study.

For lasso CLR, we identified features with nonzero coefficient estimates as relevant. To 

determine the threshold value for identifying relevant features in BVS CLR, we used the 

posterior inclusion probability estimates p̂ (γk = 1|X, Z) and applied the Bayesian FDR 

approach proposed by Muller et al. [50] and used in prior studies [51, 52]. This is a variation 

of the Benjamini and Hochberg [53] procedure where the threshold is based on increments 

in the ordered posterior probabilities rather than ordered p-values. We used an FDR level of 

0.27 in order to identify approximately as many as features as in lasso CLR.

4.3 Results

In Table 2 and Table 3, we present the following, averaged across the 50 parallel chains: (1) 

BVS CLR inclusion probabilities for the features identified using the Bayesian FDR 

approach and their corresponding ranks, along with their coefficient estimates and standard 

deviations (SDs) and, (2) the lasso CLR coefficient estimates and their SDs for the features 

identified as relevant, along with their ranks based on the magnitude of their coefficient 

estimates.

There is 64% overlap among the features identified as relevant under BVS and lasso CLR. 

There is also a considerable degree of selection overlap using the approach of Qian et al. 

[11], which identifies as relevant 71% of the features selected by BVS CLR and 85% of 

those selected by lasso CLR. On the other hand, only 21% of the features selected by BVS 

CLR and 36% of the features selected by lasso CLR are also identified as relevant using R-

PCLR. Relative to lasso CLR, the coefficient estimates under BVS CLR are noticeably 

larger in magnitude. Although the SDs for the coefficient estimates are smaller under lasso 
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CLR, this may be due to the fact that the lasso CLR coefficient estimates are generally close 

to zero in magnitude. In addition, the multivariate scale reduction factors for β and γ were 

1.15 and 1.12, respectively. Since these values are not substantially greater than 1, these 

results do not indicate a lack of convergence.

Figure 2 and 4.4 display heatmaps of Cramèr’s V matrix plot for the pairwise differences 

among the features selected in Table 2 and Table 3 as relevant and those not selected, where 

the pairwise feature differences are considered to account for matching. In these plots, black 

denotes perfect positive/negative correlation, white denotes no correlation, and light/dark 

gray denotes weak/strong correlation. In both plots, we see that the correlation among 

features is generally low, so that the structure of this dataset most closely corresponds to 

Scenario 2 (K = 100 features) in our simulation study when all binary features were weakly 

correlated.

Most of the right hemispheric brain regions identified under BVS CLR were found to be 

associated with HAP in Kemmling et al. [43], who showed that infarction in the right 

hemispheric peri-insular cortical regions was associated with the risk of acquiring HAP in 

acute ischemic stroke patients. As discussed in Section 4.1, one explanation Kemmling et 

al.provided for this finding was the association of the right insular region with 

autonomically-induced immunosuppression and susceptibility to infection shown in 

Cechetto and Chen [46], Sander and Klingelhöfer [47], and Meyer et al. [48], as well as the 

association of right hemispheric peri-insular infarction to autonomic dysfunction and 

pathologic sympathetic activity shown in Colivicchi et al. [49].

5 Application to Cardiovascular Disease Biomarker Study

5.1 Description

The cardiovascular disease biomarker study we examine was a matched case-control study 

conducted by the High Risk Plaque Initiative [BG Medicine Inc.(Waltham, MA) and other 

partners] to discover prognostic biomarkers in blood plasma for near-term cardiovascular 

events. Subjects from the CATHGEN study were selected for this investigation. The 

CATHGEN project collected peripheral blood samples from consenting research subjects 

undergoing cardiac catheterization at Duke University Medical Center from 2001 to 2011. 

68 cases were selected from among individuals who had a major adverse cardiac event 

(MACE) within two years following the time of their sample collection. In a 1:1 matched 

study design, 68 controls were selected from individuals who were MACE-free for the two 

years following sample collection and were matched to cases on age, gender, race/ethnicity 

and severity of coronary artery disease. High-content mass spectrometry and multiplexed 

immunoassay-based techniques were employed to quantify 625 proteins and metabolites 

from each subject’s serum specimen. Comprehensive metabolite profiling of the individual 

samples was based on a combination of four platforms employing mass spectrometry (MS) 

based techniques to profile lipids, fatty acids, amino acids, sugars and other metabolites. 

Proteomic analysis was based on a combination of targeted methods using a quantitative 

multiplexed immunoassay technique as well as a comprehensive protein profiling strategy 

based on tandem mass spectrometry. A detailed description of the mass spectrometry based 

platforms and proteomics analysis can be found in a previous publication [54]. In our 
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analysis, the identities of the measured metabolites and proteins are masked due to a data 

confidentiality agreement with the stakeholders involved in the study.

We consider for analysis the 593 biomarkers with complete data. In this application, we 

evaluate BVS CLR under the assumption of normality for all biomarkers, and assess its 

performance in relation to lasso CLR and R-PCLR.

5.2 Method

We used the same procedure described in Section 4.2, except that 25 parallel chains with 

different random seeds are run. To account for the high dimensionality of this dataset, we 

use S = 150, 000 iterations (B = 75, 000 burn-in) for each chain. As in our previous 

application, we set the variance σ2 in our normal prior for βk|γk to 1 and assign a Beta(5, 5) 

prior to ω. To identify relevant features, we use the Bayesian FDR approach (at an FDR 

level of 0.41) for BVS CLR based on the inclusion probability estimates and examine 

features whose lasso CLR coefficient estimates are nonzero.

5.3 Results

In Table 4, we present the estimates of the BVS CLR inclusion probabilities across the 25 

chains for the biomarkers identified using the Bayesian FDR approach and their 

corresponding ranks, along with the corresponding coefficient estimates and their SDs. We 

also report the lasso CLR coefficient estimates and their SDs across the chains for the 

biomarkers identified as relevant under lasso CLR, along with their ranks based on the 

magnitude of their coefficient estimates.

There is 52% overlap among the biomarkers identified as relevant under BVS and lasso 

CLR, and only 25% overlap among the biomarkers identified as relevant under BVS CLR 

and R-PCLR. Relative to lasso CLR, the coefficient estimates under BVS CLR are larger in 

magnitude, along with their SDs, which may be due to the fact that the lasso CLR coefficient 

estimates are generally close to zero.

In Figure 3 and Figure 4, we display heatmaps of the correlation matrix plot for the pairwise 

differences among the biomarkers selected in Table 4 as relevant and those not selected, 

where we see that the correlation among biomarkers is generally low, so that the structure of 

this dataset most closely resembles Scenario 3 (K = 600 features) in our simulation study 

when all normal features were weakly correlated. The fact that we saw lower MSE in our 

application of BVS CLR to these normal datasets suggests that the coefficient estimates 

under BVS CLR are more likely to be more accurate relative to lasso CLR.

We note that the multivariate scale reduction factors for β and γ were 3.01 and 2.95, 

respectively. Although we do not report the results, increasing the number of iterations and 

folds to a reasonable degree, considering the computational expense involved, did not 

substantially decrease these reduction factor values. This may result from the high number 

of biomarkers examined, relative to the number of subjects.
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6 Discussion

In examining the simulation study results for BVS CLR in Section 3, we see that selection 

and prediction accuracy increase as the number of pairs I increases, while MSE (for the 

relevant features) decreases. Both selection accuracy and MSE increase with decreasing K 
and Q, while selection accuracy also decreases as the correlation between features increases. 

Prediction accuracy is higher and MSE is lower for normal datasets, while prediction 

accuracy is higher for datasets where the numbers of total and relevant features are both 

moderate relative to the other simulation scenarios considered, i.e., K = 100 where 25% of 

features are relevant. Relative to lasso CLR, BVS CLR generally has lower MSE. In 

addition, BVS CLR most often has higher selection accuracy when the total number of 

features is moderate (K = 100) and higher prediction accuracy when we have at least a 

moderate number of features, which is more pronounced in datasets with fewer pairs. We 

note that the increase in selection accuracy of BVS CLR, relative to lasso CLR, is especially 

pronounced when the β values for the relevant features is relatively small (i.e., less than 1). 

Based on the study results in Section 4 and Section 5, the degree of overlap in features 

identified as relevant is higher for the binary MGH imaging data.

In cases where selection accuracy is solely of interest, we can modify BVS CLR using the 

data augmentation approach in Sha et al. [24] based on the probit approximation to the logit 

link [1 + exp(−v)]−1 ≈.Φ(v/1.7) [57]. This formulation allows for the integration of β out of 

the likelihood function, so that only the posterior inclusion probabilities are estimated. When 

applied to high dimensional datasets, this approximation approach can increase 

computational efficiency and improve mixing of the MCMC sampler [24]. Although we do 

not report its results, we also consider the probit approximation 

 to the case probability in eq. (1) when applying our 

proposed BVS approach and obtain nearly identical results compared with BVS CLR.

Possible future research directions include an extension of BVS CLR to account for 

interactions among the examined features. This can be done for two-way interactions by 

modifying our selection approach based on the methodology developed by Chipman [55]. 

Extensions of BVS CLR that incorporate specific correlation or grouping structures among 

different features, including extensions of the approaches of Smith and Fahrmeir [28] and 

Stingo et al. [29] to incorporate the spatial correlation and the correlation among features 

known to be involved in similar biological functions, can be considered for matched case-

control data.

Although our selection methodology focuses on 1:1 case-control matching, we can extend 

our formulated models for BVS CLR to handle the more general case of 1:n case-control 

matching. Another extension would account for matching across multiple groups when an 

intrinsic ordering exists among the case and control groups, e.g., matching individuals across 

different disease severity levels. We will further investigate how to do so using the 

conditional adjacent categories logistic modeling approach developed by Mukherjee et al. 

[56] for matched 1:n case-control studies. Through appropriate transformations of the 
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features and notational expansion of the matched sets, we can re-frame the modeling 

approach of Mukherjee et al. [56] for BVS CLR to handle ordinal-based matching.
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Appendix

A Simulation Study Tables

Table 5

(Simulation Study: Selection Accuracy) Summary measures for AUCs obtained from BVS 

inclusion probabilities and magnitudes of lasso CLR coefficient estimates for K = 20 and K 
= 100 features (β1, … , βQ at least 1 in magnitude).

Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low 50 1(<0.01) 1(<0.01) 0.89(0.1) 0.7(0.19)

200 1(<0.01) 1(<0.01) 1(<0.01) 1(<0.01)

High 50 1(<0.01) 1(0.08) 0.77(0.12) 0.61(0.07)

200 1(<0.01) 1(<0.01) 0.87(0.07) 0.68(0.07)

Binarya Low 50 0.94(0.12) 0.92(0.41) 0.81(0.1) 0.69(0.13)
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Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

200 1(<0.01) 1(<0.01) 0.99(0.02) 0.99(0.01)

High 50 0.94(0.14) 0.72(0.5) 0.78(0.11) 0.68(0.11)

200 1(<0.01) 1(<0.01) 0.98(0.02) 0.99(0.03)

Normalb Low 50 1(0.04) 0.99(0.04) 0.75(0.08) 0.58(0.12)

200 1(<0.01) 1(<0.01) 0.98(0.02) 0.98(0.03)

High 50 0.95(0.07) 0.73(0.07) 0.69(0.08) 0.54(0.05)

200 1(0.03) 0.99(0.14) 0.84(0.06) 0.57(0.04)

Binaryb Low 50 0.91(0.12) 0.87(0.16) 0.73(0.07) 0.64(0.1)

200 1(<0.01) 1(<0.01) 0.96(0.03) 0.95(0.04)

High 50 0.92(0.11) 0.86(0.16) 0.75(0.08) 0.63(0.07)

200 1(<0.01) 1(<0.01) 0.91(0.04) 0.89(0.05)

Normalc Low 50 0.93(0.08) 0.88(0.12) 0.64(0.06) 0.5(0.01)

200 1(<0.01) 1(<0.01) 0.9(0.04) 0.86(0.05)

High 50 0.96(0.07) 0.68(0.09) 0.67(0.08) 0.51(0.05)

200 0.98(0.05) 0.68(0.07) 0.84(0.07) 0.58(0.04)

Binaryc Low 50 0.87(0.13) 0.78(0.16) 0.66(0.07) 0.55(0.06)

200 1(0.02) 1(0.01) 0.89(0.04) 0.84(0.05)

High 50 0.84(0.12) 0.74(0.14) 0.67(0.08) 0.55(0.05)

200 0.99(0.03) 0.99(0.03) 0.8(0.07) 0.77(0.06)

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100);

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100);

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100).

Table 6

(Simulation Study: Selection Accuracy) Summary measures for AUCs obtained from BVS 

inclusion probabilities and magnitudes of lasso CLR coefficient estimates for K = 600 

features (β1, … , βQ at least 1 in magnitude).

Scenario 3
600 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR

Normala Low 50 0.52(0.05) 0.5(0.01)

200 0.61(0.05) 0.65(0.06)

High 50 0.57(0.05) 0.53(0.02)

200 0.63(0.04) 0.57(0.02)

Binarya Low 50 0.53(0.03) 0.51(0.02)

200 0.69(0.04) 0.71(0.03)

High 50 0.54(0.06) 0.52(0.02)

200 0.66(0.04) 0.67(0.03)

Normalb Low 50 0.5(0.03) 0.5(0.01)
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Scenario 3
600 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR

200 0.57(0.03) 0.56(0.03)

High 50 0.53(0.06) 0.52(0.02)

200 0.59(0.03) 0.57(0.01)

Binaryb Low 50 0.51(0.03) 0.5(0.01)

200 0.61(0.05) 0.58(0.02)

High 50 0.52(0.05) 0.51(0.01)

200 0.62(0.04) 0.6(0.03)

Normalc Low 50 0.51(0.04) 0.5(0.01)

200 0.54(0.03) 0.51(0.02)

High 50 0.52(0.04) 0.51(0.01)

200 0.55(0.03) 0.55(0.01)

Binaryc Low 50 0.51(0.03) 0.5(<0.01)

200 0.57(0.03) 0.54(0.01)

High 50 0.54(0.04) 0.53(0.01)

200 0.61(0.02) 0.6(0.01)

a
10% relevant (Q = 60).

b
25% relevant (Q = 150).

c
50% relevant (Q = 300).

Table 7

(Simulation Study: Selection Accuracy) Summary measures for AUCs obtained from BVS 

inclusion probabilities and magnitudes of lasso CLR coefficient estimates for K = 20 and K 
= 100 features (β1, … , βQ between 0.3 and 0.7 in magnitude).

Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low 50 0.83(0.25) 0.5(0.21) 0.75(0.09) 0.53(0.13)

200 1(<0.01) 1(<0.01) 0.94(0.08) 0.94(0.07)

High 50 0.89(0.22) 0.5(0.05) 0.68(0.14) 0.53(0.08)

200 1(<0.01) 1(<0.01) 0.8(0.1) 0.66(0.08)

Binarya Low 50 0.64(0.28) 0.5(<0.01) 0.62(0.11) 0.5(0.04)

200 0.88(0.19) 0.73(0.3) 0.8(0.08) 0.73(0.14)

High 50 0.69(0.28) 0.5(<0.01) 0.61(0.12) 0.5(0.05)

200 0.83(0.21) 0.71(0.28) 0.82(0.08) 0.74(0.12)

Normalb Low 50 0.88(0.14) 0.85(0.17) 0.7(0.07) 0.51(0.07)

200 1(<0.01) 1(<0.01) 0.9(0.05) 0.89(0.07)

High 50 0.83(0.12) 0.6(0.12) 0.71(0.07) 0.55(0.04)

200 0.93(0.08) 0.68(0.11) 0.83(0.05) 0.62(0.05)

Binaryb Low 50 0.67(0.21) 0.5(0.03) 0.59(0.09) 0.51(0.04)
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Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

200 0.84(0.11) 0.68(0.17) 0.78(0.09) 0.74(0.07)

High 50 0.7(0.16) 0.5(0.05) 0.63(0.09) 0.52(0.07)

200 0.89(0.09) 0.83(0.14) 0.75(0.1) 0.71(0.07)

Normalc Low 50 0.82(0.13) 0.77(0.16) 0.63(0.07) 0.5(0.01)

200 0.99(0.03) 0.99(0.03) 0.84(0.05) 0.81(0.05)

High 50 0.85(0.12) 0.52(0.1) 0.63(0.08) 0.49(0.03)

200 0.96(0.08) 0.67(0.08) 0.72(0.07) 0.49(0.05)

Binaryc Low 50 0.71(0.15) 0.5(0.11) 0.61(0.07) 0.51(0.04)

200 0.88(0.1) 0.82(0.16) 0.76(0.06) 0.71(0.05)

High 50 0.7(0.13) 0.5(0.07) 0.6(0.06) 0.51(0.04)

200 0.88(0.08) 0.82(0.11) 0.64(0.12) 0.62(0.05)

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100).

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100).

Table 8

(Simulation Study: Prediction Accuracy) Summary measures for AUCs obtained from true 

case-control status and BVS CLR/lasso CLR predicted case probabilities in independent test 

sets for K = 20 and K = 100 features (β1, … , βQ at least 1 in magnitude).

Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low 50 0.66(0.13) 0.65(0.15) 0.71(0.13) 0.65(0.24)

200 0.67(0.08) 0.66(0.09) 0.79(0.07) 0.79(0.1)

High 50 0.6(0.14) 0.55(0.15) 0.61(0.14) 0.7(0.13)

200 0.64(0.08) 0.63(0.09) 0.72(0.08) 0.73(0.07)

Binarya Low 50 0.55(0.09) 0.51(0.07) 0.6(0.1) 0.61(0.16)

200 0.53(0.06) 0.53(0.06) 0.69(0.08) 0.69(0.09)

High 50 0.53(0.11) 0.5(0.05) 0.63(0.08) 0.66(0.13)

200 0.51(0.06) 0.51(0.05) 0.69(0.07) 0.69(0.07)

Normalb Low 50 0.87(0.13) 0.89(0.1) 0.79(0.16) 0.64(0.29)

200 0.88(0.04) 0.88(0.05) 0.89(0.11) 0.91(0.08)

High 50 0.89(0.04) 0.9(0.03) 0.91(0.02) 0.91(0.02)

200 0.9(0.02) 0.9(0.02) 0.94(0.01) 0.94(0.01)

Binaryb Low 50 0.72(0.11) 0.72(0.1) 0.72(0.09) 0.69(0.15)

200 0.73(0.06) 0.74(0.06) 0.83(0.05) 0.84(0.06)

High 50 0.74(0.1) 0.74(0.1) 0.68(0.1) 0.63(0.12)

200 0.75(0.03) 0.75(0.04) 0.8(0.05) 0.79(0.06)

Normalc Low 50 0.77(0.16) 0.76(0.19) 0.76(0.09) 0.5(0.06)
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Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

200 0.82(0.08) 0.83(0.09) 0.87(0.11) 0.86(0.1)

High 50 0.79(0.08) 0.78(0.12) 0.87(0.03) 0.79(0.04)

200 0.83(0.05) 0.84(0.05) 0.91(0.02) 0.86(0.03)

Binaryc Low 50 0.69(0.1) 0.67(0.17) 0.69(0.07) 0.58(0.12)

200 0.71(0.06) 0.71(0.07) 0.78(0.06) 0.77(0.08)

High 50 0.63(0.1) 0.61(0.14) 0.66(0.09) 0.58(0.1)

200 0.63(0.06) 0.62(0.06) 0.78(0.05) 0.78(0.06)

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100);

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100).

Table 9

(Simulation Study: Prediction Accuracy) Summary measures for AUCs obtained from true 

case-control status and BVS CLR/lasso CLR predicted case probabilities in independent test 

sets for K = 600 features (β1, … , βQ at least 1 in magnitude).

Scenario 3
600 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR

Normala Low 50 0.66(0.03) 0.55(0.07)

200 0.79(0.02) 0.76(0.02)

High 50 0.77(0.07) 0.75(0.03)

200 0.84(0.04) 0.81(0.03)

Binarya Low 50 0.56(0.03) 0.52(0.04)

200 0.64(0.03) 0.66(0.08)

High 50 0.61(0.03) 0.58(0.03)

200 0.67(0.04) 0.68(0.03)

Normalb Low 50 0.67(0.04) 0.57(0.06)

200 0.81(0.02) 0.75(0.04)

High 50 0.86(0.06) 0.69(0.07)

200 0.9(0.03) 0.81(0.04)

Binaryb Low 50 0.57(0.06) 0.51(0.09)

200 0.63(0.05) 0.6(0.1)

High 50 0.68(0.06) 0.6(0.07)

200 0.78(0.02) 0.76(0.03)

Normalc Low 50 0.66(0.04) 0.57(0.07)

200 0.79(0.03) 0.75(0.03)

High 50 0.91(0.03) 0.8(0.05)

200 0.96(0.01) 0.88(0.04)

Binaryc Low 50 0.59(0.05) 0.5(0.04)
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Scenario 3
600 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR

200 0.73(0.04) 0.67(0.04)

High 50 0.94(0.03) 0.81(0.04)

200 0.97(0.01) 0.92(0.01)

a
10% relevant (Q = 60).

b
25% relevant (Q = 150)

c
50% relevant (Q = 300).

Table 10

(Simulation Study: Prediction Accuracy) Summary measures for AUCs obtained from true 

case-control status and BVS CLR/lasso CLR predicted case probabilities in independent test 

sets for K = 20 and K = 100 features (β1, … , βQ between 0.3 and 0.7 in magnitude).

Scenario 1
20 features
Median(IQR)

Scenario 2
100 features
Median(IQR)

Data type Correlation level Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low 50 0.45(0.19) 0.5(0.02) 0.54(0.17) 0.5(0.08)

200 0.48(0.14) 0.46(0.15) 0.58(0.15) 0.56(0.16)

High 50 0.49(0.24) 0.5(<0.01) 0.45(0.1) 0.48(0.12)

200 0.49(0.1) 0.46(0.14) 0.52(0.1) 0.48(0.09)

Binarya Low 50 0.5(0.11) 0.5(<0.01) 0.52(0.09) 0.5(0.01)

200 0.47(0.13) 0.48(0.13) 0.52(0.1) 0.54(0.16)

High 50 0.49(0.11) 0.5(<0.01) 0.52(0.1) 0.5(0.01)

200 0.47(0.12) 0.48(0.11) 0.5(0.1) 0.53(0.16)

Normalb Low 50 0.79(0.17) 0.8(0.25) 0.65(0.19) 0.5(0.13)

200 0.85(0.05) 0.86(0.05) 0.68(0.19) 0.67(0.22)

High 50 0.66(0.21) 0.71(0.3) 0.87(0.04) 0.87(0.04)

200 0.71(0.1) 0.74(0.09) 0.88(0.03) 0.89(0.02)

Binaryb Low 50 0.51(0.14) 0.5(<0.01) 0.56(0.12) 0.5(0.08)

200 0.52(0.14) 0.52(0.17) 0.58(0.09) 0.58(0.15)

High 50 0.59(0.14) 0.5(0.06) 0.54(0.1) 0.5(0.09)

200 0.64(0.11) 0.65(0.11) 0.57(0.09) 0.53(0.1)

Normalc Low 50 0.65(0.23) 0.65(0.28) 0.71(0.17) 0.5(0.14)

200 0.63(0.18) 0.64(0.18) 0.77(0.18) 0.75(0.23)

High 50 0.62(0.18) 0.5(0.15) 0.9(0.02) 0.89(0.02)

200 0.64(0.1) 0.6(0.1) 0.92(0.01) 0.91(0.01)

Binaryc Low 50 0.62(0.15) 0.5(0.18) 0.58(0.12) 0.5(0.13)

200 0.66(0.09) 0.66(0.1) 0.63(0.11) 0.6(0.16)

High 50 0.6(0.13) 0.5(0.14) 0.5(0.08) 0.46(0.09)

200 0.65(0.1) 0.66(0.09) 0.55(0.07) 0.51(0.08)

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100).
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c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100).

Table 11

(Simulation Study: MSE for relevant predictors) Summary measures for BVS CLR/lasso 

CLR MSE estimates for sets of relevant predictors computed across predictors (β1, … , βQ 

at least 1 in magnitude).

Scenario 1
20 features
Median

Scenario 2
100 features
Median

Scenario 3
600 features
Median

Data type Correlation level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low Yes 50 0.29 0.22 0.46 1.02 1.15 1.30

200 0.06 0.07 0.47 0.31 0.81 1.26

High Yes 50 0.19 0.53 0.78 1.11 1.17 1.28

200 0.05 0.10 0.75 0.96 1.03 1.24

Binarya Low Yes 50 0.56 0.84 1.01 1.40 1.92 2.16

200 0.09 0.17 0.29 0.40 1.34 1.83

High Yes 50 0.65 0.99 0.84 1.11 2.08 2.13

200 0.10 0.18 0.32 0.51 1.49 1.85

Normalb Low Yes 50 0.27 0.53 0.83 1.28 1.26 1.34

200 0.07 0.12 0.27 0.70 1.07 1.30

High Yes 50 0.39 0.60 1.09 1.25 1.17 1.31

200 0.20 0.26 1.10 1.18 1 1.28

Binaryb Low Yes 50 0.73 0.76 1.68 1.97 2.13 2.25

200 0.13 0.18 0.64 0.78 1.80 2.12

High Yes 50 1.11 1.22 1.83 2.08 2.07 2.23

200 0.14 0.26 0.63 0.78 1.70 2.05

Normalc Low Yes 50 0.47 0.76 0.92 1.24 1.25 1.31

200 0.07 0.26 0.53 0.92 1.12 1.30

High Yes 50 0.56 1.03 1.07 1.29 1.18 1.31

200 0.40 0.88 0.96 1.19 1.07 1.30

Binaryc Low Yes 50 0.97 0.90 1.94 2.17 2.20 2.24

200 0.26 0.21 1.20 1.24 1.90 2.20

High Yes 50 0.74 0.80 1.71 1.90 2.04 2.18

200 0.26 0.19 1.04 1.13 1.88 2.10

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100; Q = 60 for K = 600).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100; Q = 150 for K = 600).

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100; Q = 300 for K = 600).

Table 12

(Simulation Study: MSE for relevant predictors) Summary measures for BVS CLR/lasso 

CLR MSE estimates for sets of relevant predictors computed across predictors (β1, … , βQ 

between 0.3 and 0.7 in magnitude).

Scenario 1
20 features
Median

Scenario 2
100 features
Median

Data type Correlation level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low Yes 50 0.16 0.14 0.18 0.19

200 0.03 0.03 0.72 0.06

High Yes 50 0.18 0.27 0.18 0.17
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Scenario 1
20 features
Median

Scenario 2
100 features
Median

Data type Correlation level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

200 0.02 0.06 0.21 0.14

Binarya Low Yes 50 0.15 0.18 0.15 0.20

200 0.10 0.11 0.23 0.12

High Yes 50 0.19 0.22 0.17 0.20

200 0.11 0.12 0.22 0.12

Normalb Low Yes 50 0.25 0.14 0.15 0.25

200 0.04 0.03 0.46 0.09

High Yes 50 0.14 0.16 0.18 0.20

200 0.10 0.12 0.30 0.18

Binaryb Low Yes 50 0.16 0.15 0.16 0.21

200 0.10 0.11 0.24 0.13

High Yes 50 0.22 0.27 0.17 0.21

200 0.14 0.13 0.22 0.13

Normalc Low Yes 50 0.20 0.13 0.20 0.29

200 0.07 0.03 0.24 0.15

High Yes 50 0.19 0.20 0.18 0.24

200 0.13 0.07 0.16 0.22

Binaryc Low Yes 50 0.19 0.23 0.20 0.25

200 0.13 0.10 0.20 0.14

High Yes 50 0.25 0.31 0.21 0.24

200 0.14 0.11 0.20 0.19

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100);

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100).

Table 13

(Simulation Study: MSE for non-relevant predictors) Summary measures for BVS CLR/

lasso CLR MSE estimates for sets of non-relevant predictors computed across predictors 

(β1, … , βQ at least 1 in magnitude).

Scenario 1
20 features
Median

Scenario 2
100 features
Median

Scenario 3
600 features
Median

Data type Correlation level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR BVS CLR Lasso CLR

Normalc Low No 50 0.03 0.01 0.02 <0.01 0.02 <0.01

200 <0.01 <0.01 0.01 <0.01 0.04 <0.01

High No 50 0.03 0.01 0.03 <0.01 0.01 <0.01

200 <0.01 0.01 0.03 <0.01 0.01 <0.01

Binarya Low No 50 0.04 0.02 0.04 0.01 0.01 <0.01

200 0.01 0.01 0.03 0.01 0.03 <0.01

High No 50 0.04 0.03 0.04 0.01 0.01 <0.01

200 0.01 0.01 0.03 0.01 0.03 <0.01

Normalb Low No 50 0.02 0.01 0.02 <0.01 0.01 <0.01
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Scenario 1
20 features
Median

Scenario 2
100 features
Median

Scenario 3
600 features
Median

Data type Correlation level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR BVS CLR Lasso CLR

200 0.01 0.01 0.01 <0.01 0.04 <0.01

High No 50 0.02 0.01 0.01 <0.01 0.01 <0.01

200 <0.01 0.01 0.01 <0.01 0.01 <0.01

Binaryb Low No 50 0.04 0.06 0.02 0.01 0.01 <0.01

200 0.01 0.02 0.02 0.02 0.03 <0.01

High No 50 0.03 0.05 0.04 0.01 0.01 <0.01

200 0.01 0.03 0.01 0.02 0.02 <0.01

Normalc Low No 50 0.02 0.01 0.02 <0.01 0.02 <0.01

200 <0.01 0.01 0.01 <0.01 0.04 <0.01

High No 50 0.01 0.01 0.01 <0.01 <0.01 <0.01

200 <0.01 0.01 0.01 <0.01 0.01 <0.01

Binaryc Low No 50 0.03 0.06 0.03 0.01 0.02 <0.01

200 0.01 0.04 0.01 0.02 0.03 <0.01

High No 50 0.04 0.07 0.04 0.01 0.01 <0.01

200 0.01 0.04 0.01 0.02 0.01 <0.01

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100; Q = 60 for K = 600).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100; Q = 150 for K = 600);

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100; Q = 300 for K = 600).

Table 14

(Simulation Study: MSE for non-relevant predictors) Summary measures for BVS CLR/

lasso CLR MSE estimates for sets of relevant predictors computed across predictors (β1, … , 

βQ between 0.3 and 0.7 in magnitude).

Scenario 1
20 features
Median

Scenario 2
100 features
Median

Data type Correaltion level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

Normala Low Yes 50 0.03 <0.01 0.04 <0.01

200 <0.01 <0.01 0.07 <0.01

High Yes 50 0.04 <0.01 0.05 <0.01

200 <0.01 <0.01 0.04 <0.01

Binarya Low Yes 50 0.05 0.01 0.05 <0.01

200 0.01 0.01 0.04 <0.01

High Yes 50 0.05 0.01 0.05 <0.01

200 0.01 <0.01 0.04 <0.01

Normalb Low Yes 50 0.04 0.01 0.03 <0.01

200 <0.01 0.01 0.04 <0.01

High Yes 50 0.04 0.01 0.02 <0.01

200 <0.01 0.01 0.04 <0.01

Binaryb Low Yes 50 0.05 0.01 0.05 <0.01

200 0.01 0.01 0.05 0.01

High Yes 50 0.05 0.01 0.05 0.01
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Scenario 1
20 features
Median

Scenario 2
100 features
Median

Data type Correaltion level Relevant Number of pairs BVS CLR Lasso CLR BVS CLR Lasso CLR

200 0.01 0.01 0.04 0.01

Normalc Low Yes 50 0.04 0.02 0.03 <0.01

200 <0.01 0.01 0.03 0.01

High Yes 50 0.03 0.01 0.01 <0.01

200 <0.01 0.01 0.02 0.01

Binaryc Low Yes 50 0.04 0.02 0.04 0.01

200 0.01 0.02 0.04 0.01

High Yes 50 0.04 0.02 0.04 0.01

200 0.01 0.02 0.04 0.01

a
10% relevant (Q = 2 for K = 20; Q = 10 for K = 100).

b
25% relevant (Q = 5 for K = 20; Q = 25 for K = 100).

c
50% relevant (Q = 10 for K = 20; Q = 50 for K = 100).

B Trace Plots

Figure 4. 
Log posterior probability plots for simulation settings with K normally distributed features 

of which Q are relevant and weakly correlated (I = 50 pairs).

Figure 5. 
Number of selected features across post burn-in iterations for simulation settings with K 
normally distributed features of which Q are relevant and weakly correlated (I = 50 pairs).
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Figure 6. 
Inclusion status (0 = no, 1 = yes) across burn-in iterations for features with top 3 inclusion 

probabilities for simulation settings with K = 20 normally distributed features of which Q = 

5 are relevant and weakly correlated (I = 50 pairs).
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Figure 1. 
Schematic diagram of simulation and application details for each simulation.
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Figure 2. 
(MGH Imaging Study) Cramer’s V matrix plots of paired differences for features selected 

(a) and not selected (b) in Table 2 and Table 3 (black denotes perfect positive or negative 

correlation, white denotes no correlation; light/dark gray denotes weak/strong correlation).
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Figure 3. 
(CVS Disease Biomarker Study) Correlation matrix plots of paired differences for 

biomarkers selected (a) and not selected (b) in Table 4 (black denotes perfect positive or 

negative correlation, white denotes no correlation; light/dark gray denotes weak/strong 

correlation).
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Table 1

Clinical features of matched HAP and non-HAP patients [mean ± standard error for age and length of 

hospitalization; median (interquartile range) for admission NIHSS; n (%) for the remaining features].

Clinical Feature HAP (n=215) non-HAP (n=215) p-Value

Age (years)a 72.2 ± 14.9 72.3 ± 13.9 –

Malea 116 (54%) 116 (54%) –

Admission NIHSSa 13 (6 – 19) 13 (6 – 19) –

Dysphagia 151 (70.2%) 151 (70.2%) 1.00b

Hypertension 146 (68.0%) 139 (64.7%) 0.53b

Dyslipidemia 74 (34.4%) 68 (31.6%) 0.59b

Diabetes mellitus 51 (23.7%) 44 (20.5%) 0.49b

Atrial fibrillation 65 (30.2%) 58 (27.0%) 0.51b

Smoking history 38 (17.7%) 35 (16.3%) 0.78b

Coronary artery disease 59 (27.4%) 51 (23.7%) 0.39b

Mortality 41 (19.1%) 38 (17.7%) 0.80b

Length of hospitalization (days) 12.8 ± 10.2 6.1 ± 4.6 < 0.0001c

a
Feature used to match HAP and non-HAP patients.

b
McNemar’s test used to compare HAP and non-HAP patients.

c
Wilcoxon signed-rank test used to compare HAP and non-HAP patients.
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Table 3

(MGH Imaging study) Cross-validated coefficient estimates and SDs (and corresponding ranks for magnitude 

of coefficient estimates) for lasso CLR.

Code Region/Volume Rank Coef. Est. Coef. SD

v67a,b Infarction volume ≥ 67th percentile 4 0.18 0.02

j10a Cerebral peduncle R 6 0.12 0.02

j34a Fornix (cres)/Stria terminalis R 2 0.27 0.01

h74a Temporal Fusiform Cortex – anterior division R 10 −0.01 0.02

h46b Lateral Occipital Cortex – inferior division R 11 <0.01 0.01

j23b Posterior thalamic radiation L 14 <−0.01 <0.01

h32a Inferior Temporal Gyrus – temporooccipital part R 1 0.42 0.01

h51a Juxtapositional Lobule Cortex L 3 −0.26 0.02

h5a Superior Frontal Gyrus L 8 −0.07 <0.01

h8a,b Middle Frontal Gyrus R 5 0.13 0.01

j26a,b Sagittal stratum R 7 0.08 <0.01

v33a Infarction volume ≥ 33rd percentile 9 0.01 0.02

h45a Lateral Occipital Cortex – inferior division L 12 <−0.01 <0.01

h25a Middle Temporal Gyrus – temporooccipital part L 13 <0.01 <0.01

a
Selected using Qian et al. [11] selection approach.

b
Selected using R-PCLR.
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